
Also in this issue: 

Evaluating Microprocessor Performance 

A Capability-based Microprocessor 

MICRQ/ 
Is he hearing 
a familiar voice? 
Analyzing and Synthesizing Speech 



\ 

MICRQ, 
Is he hearing 
a familiar voice? 
Annli/zinn anil Sunlheahini) Speech 

On The Cover 
Will scientists be able to synthesize 
human speech so clearly we’ll be able 
to understand it as easily as we do the 
voices on our stereo records and 
tapes? They’re trying and—interest¬ 
ingly enough—they’re using PCs to 
analyze this complex task. Turn to p. 4 
for more information. 

STAFF 
Editor and Publisher 
True Seaborn 

Managing Editor 
Marie English 

Assistant Editor 
Christine Miller 

Assistant to the Publisher 
Pat Paulsen 

Advertising Director 
Dawn Peck 

Art Director 
Jay Simpson 

Design and Production 
Tricia Hayden 

Membership Manager 
Christina Champion 

Advertising Coordinators 
Heidi Rex, Marian Tibayan 

Reader Service 
Marian Tibayan 

Published by the Computer Society of the IEEE 

Departments 

From the Editor-in-Chief ^ 

MicroLaw 
Software copyright developments 81 

MicroReview 
CD ROM, desktop publishing 83 

MicroStandards 85 

MicroNews 
Superconductors 86 

New Products 90 

Product Summary 94 

Calendar 95 

Advertiser/Product Index; Change-of-Address form 96 

Reader Service Card; Reader Interest Card; 
Subscription Card 96A 



Feature Articles 

A Personal Computer-based Speech Analysis and Synthesis 
System 
Yousif A. El-Imam 

An IBM PC XT enhanced with speech boards and added memory permits 
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Department 

From the 
Editor-in'Chief 
SJ replies 
anr hanks for the extra issue of 

IEEE Micro. I will actively en¬ 
courage others to join the 

Computer Society.” SJ, Austin, TX. 
After receiving SJ’s note, I spoke with 

him by telephone. He felt that his time 
constraints prohibited him from renew¬ 
ing IEEE Micro right now. However, he 
does continue to receive Computer and 
IEEE Software. 

Mailbag 
In addition to SJ’s response, there were 

34 cards in the mailbag. So far only four 
responses have been received on the April 
TRON issue. The remainder refer to 
February or earlier: 

“Excellent issue...especially BTRON.” 
R.W., Decatur, AL 

“Best issue in the last three years (at least). 
The TRON project is something we all 
ought to know more about.” J.L., Min¬ 
neapolis, MN 

“Too much space for TRON...wasted 
issue...Amo’s (Peel) paper excellent and 
useful.” D.T., Fairfax, VA 

“Liked MicroLaw and New Products 
.. .wasn’t interested in TRON.” D.T., 
Lexington, KY 

“I liked all the papers....” P.A., 
Khorasan, Iran 

“...issue on multiprocessing was very 
good.” G.S., Bombay, India 

“Liked DSPs.” C.M., Barton, Australia 

“Liked the practical aspects of DSPs.” 
A.B., Stevenage, UK 

“DSP issue, excellent articles.” E.L., 
Nedlands, Australia 

“Liked 1987 editorial calendar.” C.G., 
Buenos Aires, Argentina 

“Liked DSP56000 and ADSP2100 ar¬ 
ticles.” Ramallah, Israel 

“Loved the letter from Fletcher J. 
Buckley!” B.S., Berkshire, UK 

“(lengthy comment)...I would like (the 
usual): more articles, more often.” I.S., 
Cambridge, MA 

“I like the new MicroStandards, but 

let’s have more on objectives and the 
status of standards.” B.W., North 
Hollywood, CA 

“MicroLaw very lucid.” G.G., Port 
Angeles, WA (During my entire associa¬ 
tion with this magazine, no aspect has 
received more consistently favorable 
comments than MicroLaw. We are in¬ 
deed fortunate to have a contributor like 
Dick Stern.—JF) 

“Oops! Photos on page 88 are reversed.” 
A.W. Lewisburg, PA (Yes, you are cor¬ 
rect. You have sharp eyes. You are not 
alone.— JF) 

“I liked the new format, more color, 
MicroNews, and parallel processors. Pic¬ 
tures on page 88 reversed.” K.S., Acton, 
MA 

“I liked MicroLaw and this issue.” 
J.A., Fairfax, VA 

“I liked the article on ‘FFT Implementa¬ 
tion Alternatives.’” H.D. Brampton, 
Canada 

“1 liked ‘FFT Implementation Alter¬ 
natives.’” S.G., Newcastle, UK 

“I liked MicroStandards and Letters to 
the Editor.” J.G., Fishkill, NY 

“The FFT article outdated.” Z.G., 
Belfast, UK 

“I liked all of it (February issue).” 
A.B., Mexico City, Mexico 

Final note: With this issue George S, 
Carson completes his terms on the 
IEEE Micro editorial board. 

Carson did an excellent job not only in 
reviewing articles but also in chairing 
our editorial board search committee. 
Our new assistant editor, Christine 
Miller, joins our staff in Los Alamitos 
this month. Her biography appears on 
page 88. 

Best regards, 

'MICRO; 
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FEATURE 

A Personal Computer-based 

Speech Analysis and Synthesis System 
Yousif A. El-Imam, IBM Kuwait Scientific Center 

Speech analysis and reproduction is a popular 
theme in research today, involving phoneticists, 
computer engineers, and signal-processing and 

speech acoustics scientists. These studies attempt to 
understand the vocal sounds and patterns inherent in 
languages so that speech may be recreated syntheti¬ 
cally, in as normal a fashion as possible. 

Personal and mainframe computers equipped with 
a general-purpose signal processor allow researchers 
to segment, analyze, and synthesize speech for experi¬ 
ments before final commitment to a target syn¬ 
thesizer. Here we discuss a system centered on the 
IBM PC XT. The system, developed at the IBM 
Kuwait Scientific Center as part of a research project 
in speech synthesis, can be used in a stand-alone 
mode, or it can be enhanced by access to a main¬ 
frame computer. 

Synthesizing a language from discrete units—such 
as short phonetic segments like allophones and 
demisyllables or long segments like words and 
phrases—requires facilities capable of carrying out 
several functions: 

• digitization, quantization, and acquisition of 
speech signals; 

• isolation of synthesis units from normal speech 
utterances; 

• verification of the contextual variations occur¬ 
ring in the synthesis units during normal continuous 
speech; 

• analysis and encoding (with suitable models) of 
the synthesis units; and 

• development and use of an adequate synthesis 
strategy. 

The use of a computer for processing a speech 
signal requires, first of all, that the signal be digi¬ 
tized, quantized, and acquired into computer memory. 
The isolation of synthesis units requires that the input 
utterance data be edited and segmented by some 
computerized facilities. Contextual variations must be 
verified by a phoneticist with perceptive judgment 
who can define each variation. The phoneticist, 
knowing the phonetic description of the language and 
the justification of the phoneticist view, is assisted by 
computer or other methods, such as the verification 
of the allophones of the basic phonemes and/or the 
study of speech prosody changes in pitch, stress, and 
rhythm. (A short glossary on the next page defines 
some of the specialized speech terminology.) 

Speech analysis and encoding identifies the 
inherent temporal variables of the model used to 
represent the human speech production mechanism. 
(See the box on page 6 for general information 
on the speech process.) Speech must also be trans¬ 
formed into a coded, compressed, parametric form to 
save computer memory. One of two approaches, 
briefly described here, can be used to model the 
speech production process. 

• The acoustical domain approach uses models 
whose parameters are measured from data of actual 
output speech. Model parameters are divided into 
source parameters (such as pitch, gain, and so on) 
and vocal tract parameters. These latter parameters 
reflect the time dependence of the spectral properties 
of the vocal tract and include variables such as the 
formants (resonance frequencies) of the vocal 
cavities1’2 or linear predictive codes (LPC) of the 
discrete-time, time-varying model of the tract.3-5 

4 0272-1732/87/0600-0004$01.00 © 1987 IEEE IEEE MICRO 
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• The articulatory approach models the dynamics 
of the vocal tract directly, rather than modeling its 
acoustical output. This approach considers physio¬ 
logical parameters such as the positions of the tongue 
tip and the rounding of the lip. This approach to 
analyzing speech signals requires considerable com¬ 
putational effort in measuring the model 
parameters.6 

Speech synthesis techniques use speech production 
models and a synthesis strategy (rules that use contex¬ 
tual knowledge about the synthesis units) to produce 
smooth parameter tracks for the target speech syn¬ 
thesizer. (The box on page 7 explains the methods of 
synthesizing speech.) With this data the synthesizer 
can produce continuous, intelligible, and possibly 
natural-sounding synthetic speech. The quality of the 
final synthetic speech depends on all the stages of the 
synthetic speech development process; neat speech 
editing and segmentation, accurate analysis and en¬ 
coding, and complete strategy rules present better 
sounds. 

Voluminous processing is required to measure and 
encode the speech model parameters. Often the num¬ 
ber of synthesis units needed for a language can be 
very large. (Arabic, for example, requires on the 

Glossary of Speech Terms 

An allophone is one of two or more variants 
of the same phoneme. (See phoneme below.) 

A demisyllable is part of a syllable that consists 
of a consonant and part of a vowel. 

A diphone is a phonetic segment that starts 
from the center of one phoneme and ends at the 
center of a neighboring phoneme. 

A formant is any of several resonance bands 
held to determine the phonetic quality of a 
vowel or speech sound. 

Fricative describes a consonant characterized 
by frictional passage of the expired breath through 
a narrowing at some point in the vocal tract. 

The elongated space between the vocal cords 
is called the glottis. 

Intonation is the rise and fall in pitch of the 
voice in speech. 

Orthographies is the part of language study that 
concerns letters and spelling. 

Phonemes are the smallest units of speech that 
serve to distinguish one utterance from another 
in a language or dialect; for example, the \p\ of 
pat and the \f\ of fat are distinctive in the 
English language. 

Phonetics is the system of speech sounds of a 
language or group of languages as well as the 
study and systematic classification of the sounds 
made in spoken utterance. 

Pitch is the difference in the relative 
vibration frequency of the human voice 
that contributes to the total meaning of 
speech. 

Prosody is the study of versification, 
especially the systematic study of metrical 
structure. 

The ordered recurrent alternation of strong 
and weak elements in the flow of sound and 
silence in speech is known as rhythm. 

Stress describes the intensity of utterance 
given to a speech sound, syllable, or word pro¬ 
ducing loudness. 

The membrane in the mouth resembling a veil 
or curtain is known as the vellum; it is also called 
the soft palate. / 

White noise is a term defining the random or 
impulsive noise that has a flat frequency spec¬ 
trum at the frequency range of interest. 

A speech window is a time frame of speech. 

June 1987 5 



Speech Analysis 

order of 1500 demisyllabic units using a syllabic ap¬ 
proach for synthesis. In comparison, the English lan¬ 
guage requires on the order of a thousand synthesis 
units using a diphone approach.) Much repetitive 
editing and segmentation is, therefore, required. 

Often, implementing the synthesis strategy rules calls 
for very large and complex programs. Most of the 
time the complete process (from digitization and seg¬ 
ment selection to synthesizing an utterance) must be 

repeated several times to produce a satisfactory 
synthesis. 

Because of these considerations, good, reliable, 
versatile, and fast computer-based techniques become 
essential tools for developing the parameter codes to 
be used for speech synthesis. 

Approaches and motivations. In the past synthetic 
speech was developed either by capable organizations 

in charge of speech development service bureaus or 
through the use of large speech analysis and synthesis 

packages that required the power of a minicomputer. 
A potential customer of the bureau would make 

speech recordings, then the bureau would develop 
and test speech parameters on a target synthesizer. 

Few minicomputer-based speech research and de¬ 
velopment systems or general-purpose digital signal 
processing software programs have been developed.7-9 

Such systems and software are very powerful, but 
their use is limited to people with access to speech 

laboratories equipped with minicomputers. 

In recent years with the development of microcom¬ 
puter and microprocessor technology, many powerful 
microcomputers (in terms of processing speed and 

storage capabilities) have emerged. New support 
hardware (such as directly pluggable boards) allows 

easy attachment of the more unusual peripherals to 
personal computers. The personal computer is now 
very versatile in many new application areas. 

Motivated by the advances in the technology of the 
personal computer and the microprocessor and the 

The Speech Production Process 
and the Speech Waveform 

The continuous movement of the articulators 

(tongue, lips, jaws, and velum) inside the vocal tract 
produces the sounds that create speech. The vocal 
tract is formed of two cavities, the oral and the 

nasal. 

• The oral cavity extends from the glottis to the 
lips. During the production of speech sounds, this 
cavity also forms a nonuniform area that depends 

on the positions of the articulators. 
• The nasal cavity extends to the nostrils and is 

formed by lowering the velum. The nasal cavity can 
become acoustically coupled to the oral cavity to 
produce the nasal sounds of speech. 

The vocal tract is excited by the action of the lung 
muscles forcing air through two small muscular flaps 
at the larynx called the vocal cords. During the pro¬ 
duction of voiced sounds, the vocal cords vibrate to 
modulate the air from the lungs, producing quasi- 
periodic pulses of air. The period is the pitch, and 
the frequency of vibration of the vocal cords is the 

fundamental frequency of the sound produced. 
Fourier analysis of the quasiperiodic pulses of air 

shows a discrete harmonic frequency structure of 
decaying amplitudes. During the production of 

voiceless sounds, the vocal cords are at rest and the 
excitation source is moved (from the larynx) to the 
point of constriction along the oral cavity. The con¬ 
striction produces turbulent air flow and the excita¬ 

tion, thus produced, is measured as a broadband 
noise. During the production of plosive sounds, a 
complete closure forms somewhere along the oral 
cavity, allowing air pressure to build behind it. The 

suddenly released air pressure results in a very short 

burst of fricative noise. 
No matter which excitation is used, the frequency 

spectrum of the output speech waveform is shaped 
by the frequency selectivity of the vocal tract. The 
vocal tract resonates at certain frequencies called 

the formants. The number and values of the for¬ 
mants depend on the area function (cross-sectional 
area as a function of distance along the tract and 
time) of the vocal tract. 

In linear system theory, the vocal tract can be 
viewed as a time-varying linear system (or filter24) 
whose parameters are assumed constant over a 
short analysis period. During voiced sound produc¬ 
tion, the filter is excited by periodic pulses; during 
unvoiced sound production, the filter is excited by 
white noise. The filtering action of the vocal tract 

produces an output speech waveform of very com¬ 
plex nature. Frequency domain methods are, 
therefore, natural means for analyzing such a signal. 

Figure A depicts the speech production process. 
Figure B shows a speech signal of an Arabic vowel 
(voiced sound segment) and Figure C, a frequency 
response of the oral cavity during the production of 
the vowel. 

6 IEEE MICRO 



Speech Synthesis Methods 

Speech can be synthesized by either of two 
methods: synthesis by analysis (also called 

analysis/synthesis) or constructive synthesis.22 Both 

methods use a set of synthesis units from which 

synthetic speech can be generated. 
In the synthesis-by-analysis approach, the syn¬ 

thesis units are long segments of speech such as 
words, phrases, or even sentences. The synthesis- 

by-analysis system encodes the acoustical represen¬ 

tation of the units to achieve varying degrees of 

speech data compression: 

• a set of parameters obtained under a technique 

called linear predictive coding and 
• direct waveform coding such as the Mozer 

method22 and the adaptive delta modulation23 

techniques. 

Synthesis-by-analysis methods are characterized by 

the ability to generate naturally sounding speech, 

but they are expensive because they must store 

many synthesis units. 
Constructive-synthesis methods use synthesis 

units that are discrete phonetic sound segments 

such as allophones, diphones, demisyllables, etc. 

Every human language has its own set of such 
sounds. The constructive-synthesis system must be 

capable of creating an inventory of such sound 

segments, suitably encoding them, and generating 

synthetic speech. These systems are characterized 
by their ability to generate an unlimited vocabulary 

of synthetic speech with less storage requirements 
than systems based on the synthesis-by-analysis 

method. However, the quality of the synthetic 

speech is not as good. 

Figure A. The speech production model. Figure C. Frequency response of the oral cavity 

during vowel production. 
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Speech Analysis 

need for simplifying and cutting down the cost and 
effort that goes into developing synthetic speech, 
some organizations have chosen to develop complete 
personal computer-based speech development systems 
(hardware and software).10 Others have chosen to de¬ 
velop complete microprocessor-based speech devel¬ 
opment stations.11 Still others have chosen to adapt 
already existing general-purpose signal processing 
packages to certain brands of personal computers.12 

Here we describe a PC-based speech development 
and research system and compare it, as far as possi¬ 
ble, to similar systems reported in the literature. The 
system can be used in a stand-alone mode or linked 
to a host computer in three domains of applications 
involving speech processing: 

• An experimental research system for synthesizing 
a language from short or long phonetic segments 
such as allophones, diphones, demisyllables, words, 
and short phrases. For this purpose the system pro¬ 
vides all the needed functions, from digitizing the 
speech to generating synthetic speech by a simulated 
LPC synthesizer. 

• A tool for conducting language-dependent 
studies such as prosodic features and the verification 
of the contextual variations in the synthesis units. 
(Verification of the allophones of the Arabic lan¬ 
guage is an example.) 

• A development tool for generating parameter 
codes (LPC or formants) that eventually could be 
adapted to a specific target synthesizer. 

System configuration 
As can be seen in Figure 1, the system we describe 

is based on an IBM PC XT computer with options 
and accessories: a 256K user RAM; a 360K floppy 
diskette drive; an IBM France Scientific Center 
speech board (FSCB);13’14 a Techmar Labmaster 
board;15 an IBM graphics adapter/display; an IBM 
expansion unit with two optional lOM-byte hard 
disks; and an optional IBM 3278 emulation board. 

The FSCB board processes the input speech signal. 
A tenth-order, elliptical, switched-capacitor, low-pass 
filter initially filters the (analog) speech. The cutoff 
frequency of the filter varies, but in this implementa¬ 
tion we keep it set at 4 kHz. A 12-bit analog-to- 
digital converter operating at a 10-kHz sample rate 
digitizes the filtered speech. The FSCB board com¬ 
putes—on a window basis (one window equals 12.8 
ms of speech or 128 speech samples) in real time— 
several short-time speech parameters such as energy, 
zero-crossing rate, and pitch. (See the accompanying 
box for a description of the windowing process.) 

The Tecmar Labmaster Board performs the final 
processing of the output speech signal. A 12-bit 
digital-to-analog converter operating at a 10-kHz 
sample rate changes the analog signal to digitized 
speech. The signal is filtered by a sixth-order, ellip¬ 
tical, switched-capacitor, low-pass filter. As on the 
FSCB board, the filter cutoff frequency is variable 
but set to 4 kHz here. The output of the filter is 
coupled through a lOOk-ohms audiotape device to the 
audio output subsystem (preamplifier, power ampli¬ 
fier, cassette recorder, and speakers). A Model 3278.3 
graphics display screen supplements the IBM 4341/2 
mainframe host computer. An IBM 3278 emulation 
board and an emulation program connect the PC XT 
and the host. 

Audio 
input 

Figure 1. System 
configuration. 
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Short-time Analysis and 
Speech Windowing 

By the nature of the speech production process, 
the speech signal can be viewed as a signal whose 

properties vary with time. The speech production 
process was modeled (in the box on page 7) by a 
time-varying, discrete-time system. The parameters 
of such a model can be assumed to be constant 
over a short-time analysis interval. This constancy 

makes short-time analysis a natural way to measure 
the time dependency of the speech production 

process. 

There are two types of short-time parameters: 
time-domain parameters such as the short-time 
energy, pitch, and zero-crossing rates; and the 
autocorrelation function and frequency domain 
parameters such as the short-time Fourier transform 

and the LPC coefficients. 
To be able to conduct short-time analysis on the 

speech signal, we must see that the signal is win¬ 
dowed by an appropriate window of appropriate 
length. Mathematically, the windowing process can 
be viewed as a convolution of a transformed ver¬ 
sion of the speech signal with the window as shown 

by the following equation: 

Q„ = £ T[X(m)]w(n-m) (A) 
m = -<x 

where T[x(m)] is a linear or nonlinear transforma¬ 
tion of the sequence x(m), and w(n) is a finite- 
duration window positioned at time index n. 

Two types of windows are in common use for 
short-time analysis: a Hamming window, whose im¬ 

pulse response is given by 

h(n)=0M - 0.46 cos[2 ir n/ (TV— 1)], 
0 < n < N-1 (B) 

= 0 otherwise 

and a rectangular window of impulse response 

given by 

h(n) = 1 0 < n < N-1 ^ 

= 0 otherwise 

where N is the window length in speech samples. 
Short-time windowing has four important func¬ 

tions: 

• it emphasizes the part of the speech signal to 

undergo analysis and sets the signal to zero outside 

the analysis frame; 

• when properly chosen, it gives a clear indica¬ 
tion of the time-dependent properties of the speech 

signal; 
• it represents a smoothed version of the spectral 

properties of the signal inside the window; thus, if 
the spectral properties of the signal are uniform out¬ 

side the analysis frame (a sustained speech seg¬ 
ment), a short-time Fourier transform, for example, 

should represent the average properties of the 
signal outside the analysis frame; and 

• in some cases, it guarantees the existence of 
the short-time quantity being measured. 

Rabiner and Schafer give a more complete dis¬ 
cussion of short-time analysis and the effect of win¬ 
dowing on the various short-time parameters.16 

The type of window used has an important effect 
on the properties of the short-time quantity being 
measured. We illustrate this by considering the 
short-time Fourier transform. A useful definition of 
this transform appears in the following form: 

oc 

Xn(eJw)= £ w(n-m) X(m)e-Jwm (D) 
m= - oc 

where w(n) is a window (Hamming or rectangular) 

and x(m) is the speech signal. We can interpret this 
equation in two ways: 

• as the normal Fourier transform of the se¬ 
quence ur(n - m)x(m); or 

• as the convolution of the window w(n) with 

the quantity x{m)e'iwm. 

The first interpretation leads to the fact that, for the 

normal Fourier transform of the sequence to exist, 
the condition 

^ I w(n-m)x(n) I <a ® 
rt= —oc 

must be satisfied. This is true since the window w(n) 
has a finite duration. This explanation shows how 
windowing can help guarantee the existence of cer¬ 

tain short-time parameters. 
The second interpretation leads to better insight 

into the characteristics of the window w(n) in the 
frequency domain and in terms of linear filtering 
theory. Ideally, we want the window impulse 
response to approximate a low-pass filter of cutoff 
w. The sharper and smaller the cutoff frequency 

(narrow-band analysis) is, the better the frequency 
resolution of the window; the larger the cutoff 
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(wide-band analysis) is, the better the time resolu¬ 
tion of the window. 

Figure D presents impulse responses of the rect¬ 
angular and Hamming windows. As seen, these re¬ 
sponses hardly approximate an ideal low-pass filter. 
They are characterized by a main lobe of given 
bandwidth and side lobes of certain levels. For both 
windows the bandwidth is inversely proportional to 
the window length, and for a given length it is nar¬ 
rower for a rectangular window than for a Ham¬ 
ming window. The levels of the side lobes are in¬ 
dependent of the window length, but they are 
higher for the rectangular window than they are for 
the Hamming window. 

Thus, in general, if speech analysts are interested 
in recovering the periodicity (harmonic structure) 
from short-time Fourier transform analysis, they 
should use a window of longer length. A rectangu¬ 
lar window shows harmonic structure better than 
does a Hamming window; however, because of the 
large level of side lobes, the short-time Fourier 
transform of the rectangular window is noisier than 
the Hamming window. As a result, analysts seldom 
use rectangular windows in short-time spectral 
analysis of the speech signal. 

On the other hand, the smaller the window 
length is, the poorer will be the frequency resolution 
(because of the wide bandwidth of the window). 
But the smaller window length will average the 
complete spectral properties of the speech signal 
better; it will also represent the short-time Fourier 
transform better to such temporal variables of the 
signal as the formants. 

Figure D. Impulse response of a rectangular window (a); impulse 
response of a Hamming window (b).16 (© 1978, Prentice-Hall, 

Englewood Cliffs, New Jersey. Reprinted with permission.) 

System functions 
The PC XT exercises control over all aspects of the 

system by providing, through the use of application 
software and a system menu, the following interac¬ 
tive functions: 

• speech editing and segmentation, 
• speech analysis and encoding, 
• speech synthesis, 
• speech prosodic analysis, and 
• connection to the host. 

Figure 2 summarizes the work carried out by each 
system function and shows the interaction between 
the menu program and the programs implementing 
those functions. Users select menu items with the 
help of function keys as shown in the figure. The 
menu program is reentered once a program imple¬ 
menting any specific function is completed. The 
following sections detail the achievements of these 
functions and the programs implementing them. 

Speech editing and segmentation. Computer-based 
speech editing allows the speech scientist to input 
speech, select the segments of speech that are of in¬ 
terest to his application, and store the selected seg¬ 
ments in a backup medium for any future use. With 
speech synthesis, the number of synthesis units can be 
very large, and much repetitive editing may, there¬ 
fore, be necessary. This requirement necessitates effi¬ 
cient and fast interactive computer-based editing and 
segmentation facilities. 

The present interactive speech editor offers user 
prompts to aid in beginning any required action. The 
segmentation of the speech data is not carried out 
directly on waveform displays. The editor program 
uses the FSCB board capability of evaluating the 
short-time energy and zero-crossing rate in real time. 
From the FSCB board, the program retrieves window 
values for the energy and the zero-crossing rate (a 
maximum of 256 window values, equivalent to about 
3.3 seconds of speech) and displays them. Users can 
then move an interactive graphics cursor to select and 
isolate any segment of speech of interest to them. 

The use of the short-time energy and zero-crossing 
rate for speech segmentation is well known and has 
certain advantages.16 First, users can easily select the 
speech segment of interest because the classification 
of speech segments into voiced and unvoiced forms is 
easily seen from energy and zero-crossing displays. 
Second, because the speech is displayed in com¬ 
pressed form (only 256 points are used to represent a 
speech waveform of 65,536 samples), users can work 
with a low-resolution graphics terminal instead of the 
usual high-resolution terminals. In this implementa¬ 
tion we use the medium-resolution (320 x 200) IBM 
graphics terminal in the color mode. 

The editor program selects any segment from ac¬ 
quired speech data in two stages. In the first stage 
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Figure 2. A sum¬ 
mary of system 
functions and menu 
function selection. 

users eliminate (from energy display) any silence in 
the acquired speech. In the second stage users select 
(from energy and zero-crossing-rate displays of the 
cleaned speech) the speech segment of interest. After 
this, users can display and view selected speech 
samples. 

Other functions carried out by the editor are: 

• repetitive capture and replay of any utterance 
until satisfactory hearing is achieved, 

• optional filing (on the PC hard disk) of the 
cleaned speech and of any selected speech segment, 

• retrieval (from the hard disk) of any previously 
filed, cleaned speech for any further segmentation, 
and 

• spectrum evaluation and display of any portion 
of a voiced speech segment. 

The editor allows users to speedily create on the 
PC XT hard disk an inventory of speech synthesis 

units (short phonetic segments like the demisyllables 
or complete word utterances). These units could be 
used later in speech synthesis research or application. 
Segment duration measurements are readily available 
from the editor program. These measurements are 
useful in language-dependent studies such as the 
verification of the contextual variations of the syn¬ 
thesis units and the study of some prosodic features 
such as changes in speech rhythm. 

Additionally, the editor allows two speech wave¬ 
forms to be active simultaneously in the PC RAM. 
Users can select and swap segments of equal lengths 
between the two waveforms and alternately replay 
them. We found that this facility can be of some use 
in the study of certain linguistic phenomenon such as 
the source of emphasis in the Arabic language.17 

The editor program is a hybrid between several 
assembly language routines and a compiled Basic 
main program. Compiled Basic is used for the main 
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Figure 3. Flowchart for the speech segmentation program. 

IEEE MICRO 



To utterance 
recording (PI) 

A 

• Relocate present 
segment in PC RAM 

• Remember segment 
boundaries 

• Set comparison 
indicators 

180f 45 

program because it interfaces easily to the FSCB 
board and the assembly language routines, runs as 
fast as any other compiled language for the PC, and 
has superb color graphics capabilities. Assembly lan¬ 
guage routines carry out low-level hardware-depen- 
dent tasks such as: 

• controlling the digital-to-analog conversion and 
replay of the speech, 

• relocating the speech from the FSCB into the 
user-free RAM, and 

• switching the display mode between mono¬ 
chrome text and color graphics. 

The editor uses both monochrome and color 
graphics screens. The monochrome screen outputs 
the text of user prompts and editor response mes¬ 
sages, while the graphics screen is used exclusively for 
graphic output. This mode of operation is less con¬ 
fusing for users than using one text/graphics screen 
for simultaneous text and graphics output. 

For any segment or utterance being processed, the 
editor outputs two disk files: a file of raw speech data 
for the segment or utterance being processed and a 
file of the short-time parameters for the same ut¬ 
terance. The flowchart in Figure 3 represents the way 
the program implements the speech-editing functions. 
Figure 4 shows the way a segment of speech is 
selected from short-time energy and zero-crossing 
curves. 

Speech analysis and encoding. Analyzing and en¬ 
coding speech as LPC parameters, pitch, and energy- 
related gain is accomplished through short-time 
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Figure 4. Interactive selection of a speech segment; energy (1), zero-crossing rate (2). 
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analysis techniques. (See the box on LPC techniques 
and computations.) The interactive speech analysis 
and encoding program takes, as input, the two files 
created by the editor and carries out, on a window 
basis, the following computations and functions: 

• 14 autocorrelation coefficients from which 14 
LPC parameters are derived, 

• 14 LPC parameters, 
• pitch and gain, 
• optional display of window samples and the win¬ 

dow autocorrelation function, 
• optional graphical representation of the LPC pa¬ 

rameters, 
• optional display and editing of the LPC parame¬ 

ters, and 
• filing of the parameters. 

The display of window samples and the autocor¬ 
relation function allows users to make an empirical 
judgment about whether the window is voiced or un¬ 
voiced. Based on this decision, the program either 
computes or does not compute a pitch for the win¬ 
dow. This step is important since some speech-voiced 
fricative windows—the shape of the autocorrelation 
function—while showing voicing presence do not 
really exhibit the sharp peaks necessary to satisfy the 
automatic pitch-detection criterion described in the 
box. 

The graphical representation of the LPC parame¬ 
ters permits users to make spectral comparisons be¬ 
tween segments of the same class. This type of com¬ 
parison is useful in conducting language-dependent 
studies such as the verification of a language’s 
allophones. 

One may wonder why the process of finding the 
pitch is followed when the FSCB readily evaluates it 
in real time. The reason is that the FSCB pitch com¬ 
putation is tailored toward evaluating the pitch of 
sustained, uniform-voiced speech sounds. (For exam¬ 
ple, children with pitch irregularities could learn to 
control the pitch of their voices by using computer- 
based pitch-activated games.14) For this purpose the 
FSCB is very reliable; however, it is not suitable for 
normal continuous speech. 

In synthesizing speech, it is always better to extract 
the synthesis units from continuous speech. The least 
this pitch computation will do is to verify whether the 
calculated pitch agrees with the FSCB board’s pitch 
or not. If the results are not the same, users can 
depend on their own phonetic knowledge about the 
speech segment being encoded to decide whether to 
give the disputed window a pitch value or zero 
pitch—guided also by neighboring values. 

The speech encoding and analysis process pro¬ 
gresses interactively, one window at a time. The pa¬ 
rameter values for each window in an utterance are 
computed, verified, edited (if necessary), and added 
to a parameter disk file. The compiled Basic program 

LPC Technique and Computations 
Performed by the Analysis 

Program 

Linear predictive coding is one of the well-known 
frequency domain techniques for speech analysis 
and synthesis. With this technique the vocal tract is 
modeled by a time-varying digital filter whose pa¬ 
rameters are assumed constant over a short-time 
analysis window. The filter is either excited by 
periodic pulses for (voiced speech sounds) or by 
random noise (for unvoiced sounds). 

A well-known property of linear predictive coeffi¬ 
cients is their relationship to the geometry of a con¬ 
catenation of lossless acoustic tubes. This property 
gives a physical correspondence between the LPC 
model and the speech production process discussed 
earlier. The vocal tract model used in the following 
computations is a 14-pole, time-varying digital filter 
whose steady-state system function is of the form: 

H(z)= -9- 

1- £ aiZ-' (a> 
(=1 

The parameters that we need to measure from 
real speech data are the gain (G), the 14 LPC 
coefficients (a), and the pitch of the speech (for 
voiced sounds). The algorithms behind the compu¬ 
tations of these parameters are well explained in the 
literature. The speech analysis program implements 
the algorithms. We give a brief overview here. 

LPC computations 
The first set of computations finds the 14 auto¬ 

correlation coefficients from which the vocal tract 
model parameters are derived. The 14 auto¬ 
correlation coefficients satisfy the relation 

R(k) = E y(>)*yd + k) 
i,k o< / < 127 -k (b) 

k < 13 

We obtain the sequence y(i) by multiplying the 
original window data by a Hamming window of 
equal length and of the form 

H(i) = 0.54-0.46 *cos(2 **■*/'/127) 

o < / < 127 (c) 

The computed set of 14 autocorrelation coeffi¬ 
cients represent the window’s low-time autocorrela¬ 
tion values. They also represent the frequency spec¬ 
tral characteristics of the window and are thus used 
to compute the 14 linear predictive coefficients. 

We use the autocorrelation method3 to obtain 
the linear predictive coefficients. Durbin’s recursive 
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algorithm provides the predictor estimates.25 The 
following recursive equations summarize this 
algorithm: 

£?(°) = R (0) (d) 

i— 1 .. 
- £ a^RU-j) / e (/-l) (e) 

7=1 1 < / < 14 

a (P = kj (f) 

a 1 

•i. II a (i-i) 
i-j (g) 

eh) = (1 -kj)2 e<'-h (h) 
1 < y < / - 1 

Equations (d) through (h) are solved recursively 
fori = 1,2,3,..., 14. The final solution for the LPC 
model coefficients is given by 

07 = 0:7(* *4) 

i < j < 14 (i) 

In the solution for the 14 LPC coefficients, the 
autocorrelation coefficients R(k) are replaced by 
their normalized counterparts: 

Pitch computation 
The second set of computations carried out on 

the window data deals with detecting the funda¬ 
mental frequency of the window. The technique 
used for extracting the pitch of the window is essen¬ 
tially a variation of Sohndhi’s method26 for spec¬ 
trum flattering to remove the effects of the vocal 
tract transfer function on the window autocorrela¬ 
tion function. This method leads to peaks, (pro¬ 
duced essentially because of the voice pitch), which 
show on the autocorrelation function. We summa¬ 
rize the technique: 

• Send the original window data through a 900- 
Hz, digital low-pass filter having a discrete transfer 
function of 

z~2 + a\z~ l+a2 

z~2-blz~1 + b2 (1) 

al = 2\a2= \\b\ = 0.845; b2 = 0.25 

• Compute the maximums in the first and last 
thirds of the filtered output, and the signal is clipped 
to 68 percent of the minimum of the two maximums. 

• Use the output from the clipper to create a set 
of 128 autocorrelation coefficients (window auto¬ 
correlation function), which are used for tracking 
the pitch. Compute the autocorrelation function 
from the relation 

r(k) = R(k)/R(o) (j) 

This equation does not change the solution to the 
LPC model parameters but leads to the partial cor¬ 
relation coefficients, or PARCOR coefficients, with 
(kj) satisfying the condition 

-1 < k < 1 (k) 

R(p) = E *(*) **(» +P) (m) 
i,p os/ <127 - p; o < p < 127 

• A window is automatically indicated as voiced 
if the peak in the autocorrelation function is 30 per¬ 
cent of its value at zero time. Figure E shows the 
autocorrelation function and the speech samples of 
a voiced window. 

This condition on the quantities /c, is the neces¬ 
sary and sufficient condition for the LPC vocal tract 
model to be stable.4’5 The autocorrelation coeffi¬ 
cients are computed with sufficient numerical ac¬ 
curacy so no instability problems are met as a result 
of rounding-off errors in computation. 

The window gain is computed from the following 
relationship: 

14 

G2 = R(o) — £ akR(k) (n) 
k=\ 

Figure E. Autocorrelation function (1) and speech samples (2) for a voiced window. 
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uses the assembly language routine to switch between 
monochrome and color graphics screens. The flow¬ 
chart in Figure 5 shows the logic of the program. 

Speech synthesis. A speech synthesis program, 
which is a software simulation of an LPC synthesizer, 
takes as input the encoded parameter disk files and 

delivers synthetic speech through either a synthesis- 
by-analysis or a constructive-synthesis method. In 
constructive synthesis the program smooths out the 
transitions across phonetic segment boundaries. 

The time-varying, discrete-time LPC model, whose 
function in the steady-state system is given by Equa¬ 
tion a (in the box on LPC techniques and computa- 

C Start ) 

(PI) 

• Get utterance/segment 
data and parameters 

• Relocate speech data 
1 

Compute LPC and gain 
1 Display parameters 
i Edit parameters (if needed) 
■ Add parameters to disk file 
■ Increment frame counter 

(P2) 

◄- 

To (P2) 

■ Change display mode to 
graphics 

■ Display speech samples 
and window auto¬ 
correlation function 

Change display mode to 
monochrome 
Display energy, pitch, 
and zero energy rate of 
FSCB 

Compute auto correlation 
function for current frame 

Compute pitch 

Figure 5. Flowchart of the speech analysis program. 

16 IEEE MICRO 



tions), produces synthetic speech. For this system we 
relate the output speech samples x(n) to the input ex¬ 
citation u(n) by the following difference equation, 
which is of the recursive type: 

14 

x(n) = £ ak x(n-k) -I- Gu(n) (1) 
k = \ 

The model is excited by an impulse train spaced at 
the fundamental period for a voiced speech window 
and by a wide-band random-noise sequence for an 
unvoiced window. 

The quality of the synthetic speech is very good 
when synthesizing words and short phrases (for 
Arabic and other languages) with the synthesis-by¬ 
analysis method. The quality is also very good for 
synthesizing Arabic using a constructive-synthesis ap¬ 
proach on demisyllabic units. However, for the time 
being, barely intelligible Arabic is produced using 
basic sound units such as allophones. Besides syn¬ 
thesizing and replaying speech, the speech synthesis 
program creates a disk file that holds the samples of 
the synthesized utterance. Users can also choose to 
view speech waveforms of synthetic and actual 
utterances. 

Like the speech editor and the analysis programs, 
the synthesis program consists of a few assembly lan¬ 
guage routines linked to a main program. The main 
program is written in compiled Basic, and the same 
assembly language routines used with the editor are 
used here for the same purpose. The flowchart in 
Figure 6 shows the logic of the program; Figure 7 
reproduces synthetic and actual speech waveforms 
for a voiced window. 

Prosodic features. The study of speech prosody in 
terms of variations that occur to the speech supra- 
segmental parameters (stress, pitch, or intonation and 
rhythm) during normal continuous speech is impor¬ 
tant in producing high-quality synthetic speech. 

Such a study is needed for developing the rules 
underlying those variations and is important for con¬ 
structive synthesis (synthesis by rule or text into 

Figure 6. Flowchart of the speech synthesis program. 

speech). The rules, so developed, can be implemented 
by a text-to-sound transcription program, which 
analyzes input text and delivers smoothed parameter 
tracks for a synthesizer. 

A program that plots pitch and energy contours as 
functions of time for a short sentence is included. 
The values of the pitch and energy for the sentence 
are obtained during the editing and the analysis 

10-MV 

Time 

Figure 7. Examples of windows: excitation (1), synthetic (2), and actual voiced (3). 

12.8ms 
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Time -► 425 ms 

Figure 8. Pitch (1) and energy (2) contours for an Arabic word. 

phases. Figure 8 shows such pitch and energy con¬ 
tours for a word made up of three syllables. From 
the shapes of these contours, it is obvious that the 
speaker has stressed the first syllable of the word and 
has said the word in an inquisitive context (indicated 
by the rising pitch). 

Connection to the host and host analysis program. 
A high-speed link exists between the PC and the host 
computer. This link allows high-speed speech data 
transfer between the two computers. The connection 
to the host is useful as it allows users to take advan¬ 
tage of some powerful speech signal processing 
facilities available only at the host. 

A powerful one- and two-dimensional signal pro¬ 
cessing package has been developed by the IBM Win¬ 
chester Scientific Center.18 This package can readily 
be used for speech processing applications. User- 
written macros in the IAX language (the language of 
the Winchester package) can perform the following 
speech-processing functions: 

• spectrum analysis and display for any speech seg¬ 
ment to extract such variables as the formants of cer¬ 
tain voiced segments, 

• spectrographic analysis and display for any utter¬ 
ance to show sound segment length and the formant 
movement in continuous speech,19 

• cepstrum analysis for any speech segment to 
evaluate speech variables such as the pitch or the for¬ 
mants.20’21 

The above analyses are useful if users are trying 
to encode speech in terms of formants (values, band- 
widths, and amplitudes). They can also be useful if 
users are conducting language-dependent studies such 
as the contextual variations of the synthesis units. We 
have already used this host facility together with LPC 
analysis in conducting spectral studies on the Arabic 
language to verify its allophones. 

The host connection is also useful in archiving 
speech data on the host. This data could later be 
retrieved for reanalysis on either the host or the PC, 
if the need arises. 

Comparision with other systems 
The following comparison between the present 

system and three other personal computer- or micro¬ 
processor-based systems does not show which system 
is good and which is not. All systems given here are 
good in terms of their own specific design objectives. 
We simply hope that this comparison highlights the 
features of each system, which make it more suitable 
than the others in a given application. 

The comparison includes a system’s technical 
aspects of the: 

• processor and type of PC; 
• speech segmentation method and graphics resolu¬ 

tion needed; 
• speech analysis method, analysis speed, length of 

speech utterance to be analyzed and synthesized at 
one time, and speech data compression rate; 

• speech synthesis method; 
• system utility for other purposes; and 
• feasibility of connecting the system to a larger 

host computer. 

These aspects are not absolute measures but are 
only indicators to the goodness of a system. To dem¬ 
onstrate this fact, we point out that analysis speed, 
for example, depends on—besides the speed of the 
processor—the particular analysis method chosen, 
the programming language used, and skill of the 
programmer. 

The systems we have come across in the literature 
are: 

1) a system developed by a group from the Philips 
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Company and centered on an HP9816S desktop 
computer,10 

2) the Portable Speech Development Laboratory 
(PASS) from Texas Instruments,11 and 

3) the Interactive Laboratory System for the IBM 
PC and XT (ILS-PC1) from Signal Technology, 
Inc.12 

Table 1 summarizes the technical aspects for each 
of the three systems and for our present system. As 
stated early in this article, the present system meets 
three objectives: 

• a system to conduct experiments in synthesizing a 
language (Arabic is the main target) using a construc¬ 
tive-synthesis or a synthesis-by-analysis approach; 

• a tool for conducting language-dependent 
studies, such as the study of prosodic features and 
the verification of the contextual variations in the 
synthesis units; and 

• a tool for generating parameter codes, which 
later can be adapted to a specific target synthesizer. 

The first aim is met by using the PC in a stand¬ 
alone mode. Fast editing and segmentation facilities, 
which can be used with low-resolution terminals, 
have been incorporated in the system. The analyses 
are carried out at reasonable speed by using only the 
power of the Intel 8088 (not a true 16-bit processor). 
As the system is experimental only, a software 
simulation of a synthesizer performs the synthesis. 
The study of the language-dependent aspects can be 
carried out only on the PC and at reasonable speed. 
The development of parameter codes to be used with 
a future target synthesizer requires the use of both 
the PC and a host at this stage. 

The PASS and the Philips systems have been de¬ 
signed with different objectives than our present sys¬ 
tem. As far as I can see, both systems were designed 

Table 1. 
Technical aspects of present system 

and other PC- or microcomputer-based systems. 

|System (Processor 6c PC (Segmentation |*Analysis method]Synthesis Method|System's utility|Connnectivity 

i | used | method 5c VDU (^Analysis speed |for other |to a larger 
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1 i |*Data reduction i 
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|IBM PC on which (Possible, user 

1 |Inside IBM-PC |with a cursor |analysis |system is based |provide his own 
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1 i i i (data archiving 
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to act, mainly, as tools for developing parameter 
codes for specific target synthesizers using a syn- 
thesis-by-analysis method. The systems use either true 
16-bit or 32-bit microprocessors. It appears, there¬ 
fore, that in applications where the primary need is 
for fast development of coded speech to be used later 
in a product using a specific target synthesizer, the 
PASS system offers advantages over the others. 

The Philips ILS-PC1 system is a general-purpose 
signal processing package, which has been adapted to 
run on the IBM PC and XT. It appears from the 
designer’s choice of the PC and the wide range of 
signals for which the package can be used (from low- 
frequency underwater acoustic waveforms to very 
high frequency radar signals) that the aim was to 
satisfy the needs of a large class of scientists involved, 
in one way or another, in signal processing. 

As far as I can tell, for speech analysis the ILS-PC 
runs at the normal PC pace Gust like our present sys¬ 
tem), and it allows users to perform spectral analysis 
and encode speech in terms of formants. It appears 
also that the present implementation of the ILS-PC 
does not support speech synthesis, as was the case 
with the ILS for minicomputers. 

IBM’s Kuwait Scientific Center uses a speech seg¬ 
mentation, analysis, and synthesis system, which 
is centered on the IBM PC XT. This system can 

be used in applications in which users wish to ex¬ 
periment with language synthesis and language- 
dependent studies before committing to a target syn¬ 
thesizer. 

The system can also be used to develop speech pa¬ 
rameter codes that could eventually be adapted to a 
specific target synthesizer. In a stand-alone mode the 
system performs functions useful in speech synthesis 
research. These include the: 

• input and editing of speech; 
• creation of phonetic speech segments, words, 

phrases, or inventories of sentences and measure¬ 
ments of their durations; 

• analysis and encoding of speech in linear predic¬ 
tive codes; 

• study of prosodic language features translated 
into displays showing pitch and energy contours; 

• verification of contextual variations of the syn¬ 
thesis units and measurements of their durations and 
changes in LPC spectral properties; and 

• software simulation of a speech synthesizer as the 
discrete-time linear predictive model for speech 
production. 

These functions are enhanced by having access to a 
mainframe computer supporting a general-purpose 
signal processing package such as the IAX. Such a 
connection offers additional signal processing capa¬ 
bilities, for example, coding speech by using for¬ 
mants and formant-based studies of a language. The 

connection can also be used for archiving speech data 
on a host. 

The menu-driven system is fully user-interactive 
and modular. Modularity permits the system to be 
changed easily to accommodate signal processing al¬ 
gorithms other than those already implemented on it. 
As it stands now, the system uses only the Intel 8088 
microprocessor, which is the heart of the IBM PC XT 
computer. Its speed in performing functions is good. 
However, system performance could be enhanced fur¬ 
ther by (1) adding the Intel 8087 coprocessor, (2) 
changing the existing software and hardware to an 
IBM PC AT with a true 16-bit processor, and (3) 
adding dedicated speech processing hardware such as 
boards with hardware signal processing capabilities. 
Besides increasing the speed of the existing software, 
any of these methods can also turn the system into a 
very powerful and speedy formant analyzer and 
synthesizer. 

The system has been developed as part of a 
research project in speech synthesis. This project en¬ 
visages synthesizing an unlimited Arabic vocabulary 
by using a constructive-synthesis approach (using 
short speech segments such as demisyllables or allo- 
phones). So the system must, at some stage, have the 
capability of turning Arabic orthographic input into 
speech. Provision has been made for this capability in 
the design; the modularity of the system also helps. 

Currently, the system verifies the results of a 
phonetic study of the Arabic language, which is 
determining and validating the synthesis units. Very 
good results have been achieved with a syllabic ap¬ 
proach to synthesis. 

Finally, we compared this system with other sys¬ 
tems of a similar nature. We showed its potential use 
as an experimental research system in language con¬ 
structive synthesis and in the study of language 
phonetic properties. M 
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ADDRESS 
MAPPING WITH 

OVERLAPPED 
ROTATING 

ENTRIES 
G.J. Dekker and A.J. van de Goor 
Delft University of Technology, The Netherlands 

A memory management unit can be designed 
specifically for use with the Unix operating 
system and can take the place of a commer¬ 

cially available MMU chip such as the Motorola 
MC68451 or the National Semiconductor NS16082. 
A team of students and staff members of the com¬ 
puter architecture group of the 
Laboratory for Switching 
Technique and Computer Ar¬ 
chitecture, of the Delft Univer¬ 
sity of Technology in the 
Netherlands, has developed a 
general-purpose, high-perfor¬ 
mance, single-board system 
with such an MMU. At the 
time the MMU was designed, 
it had already been decided 
that the Unix operating system 
was going to be used and that 
the system would consist of a 
MC68010 CPU, 1M bytes of 
memory, and a fast Winchester disk. 

Memory management concepts. Let us begin with 
a functional description of a memory management 
unit. However, since our single-board computer is in¬ 
tended to be used with the Unix operating system, we 
will examine memory management in this context in¬ 
stead of giving a more general presentation. 

One of the most important components of a com¬ 
puter system (apart from the CPU) is the MMU.1 

This device maps addresses generated by the CPU, 
which are called logical addresses or sometimes vir¬ 
tual addresses (e.g., in the VAX), into addresses for 
the main memory, which are called physical addresses 
(Figure 1). The minimum tasks Unix requires this 
translation to perform can be described by the terms 

relocation and protection. 
Relocation usually implies 

that sets of contiguous logical 
addresses are mapped to sets 
of contiguous physical ad¬ 
dresses of an equal length but 
at a different location. Protec¬ 
tion means that the MMU is 
capable of giving access pro¬ 
tection to sets of logical ad¬ 
dresses (that is, can specify 
read, write, and execute 
access). 

Besides these two minimum 
requirements, two other cap¬ 

abilities are specified in more sophisticated versions of 
Unix—paging or segmentation and virtual memory. 

It would alleviate the task of physical memory 
allocation strategies if it were not necessary for sets 
of logical addresses having the same relocation 
and/or protection to be mapped on single pieces of 
physical memory of equal length. Such mapping can 
be avoided if one subdivides a set of logical addresses 
into a number of partitions, each able to be relocated 
to noncontiguous pieces of physical memory and 

A memory management unit that 
supports demand paging is 

implemented with standard logic 
and fast-access RAM chips, 

resulting in much faster 
address translation than that 

provided by the standard 
Motorola MC68451 MMU. 
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each having its own protection (i.e., read, write, and 
execute protection). When all these pieces are of 
equal length this technique is called paging, and when 
they can be of varying length it is usually called 
segmentation. 

Because of localities in address references, it is not 
necessary to have all pages or segments loaded in 
physical memory during the execution of a program. 
The operating system can load only those parts that 
are actually needed and store the remaining parts on 
disk. However, if the program generates a logical 
address located in a section that is not loaded in main 
memory, the MMU has to signal this fact to the pro¬ 
cessor, which postpones the partially executed in¬ 
struction and takes the action required to load the 
appropriate section. After this, the program can be 
resumed. This scheme is called virtual memory. 

Data 

JL 

CPU 

IfT 

Logical 
address 

■> MMU 

Addressing error 

Physical 
address. 

-S» 
Main 

memory 

Figure 1. Logical to physical address mapping through an MMU. 

23 16 15 9 8 

Index 1 Index 2 Offset 

"V" 
.y\_ 

Logical page number Pageoffset 

Index 1: Page table entry 

Index 2: Pointertable entry 

Figure 2. The logical address in the National NS16082. 

Existing MMUs. Let us briefly examine three ex¬ 
isting MMUs—the Motorola MC68451, the National 
Semiconductor NS 16082, and the Western Electric 
Bellmac-32—and present the reasons why we did not 
choose any of them. 

The MC68451. Since this MMU did not seem well 
suited to our system, we will not elaborate on its 
details.2 However, it had the following advantages: 

• It is a member of the M68000 family, which 
makes it easy to interface to the MC68000. 

• It is a single-chip VLSI design, which makes it 
reliable and easy to implement. 

• The version of Unix we were using had already 
been adapted to it. 

But the MC68451 also had several disadvantages: 

• It allows only 32 variable-length segments to be 
used per MMU. 

• It forces each segment to have a length equal to a 
power of two, complicating memory management 
strategies (binary buddy algorithms, etc.). 

• Its fastest version (8 MHz) still has a 217-ns 
address delay time, which introduces two extra wait 
cycles in a memory access. 

• It is not very well suited for some kinds of virtual 
memory due to its limited number of segment regis¬ 
ters (although some form of demand segmentation 
can be implemented). 

It was these disadvantages that made us decide not to 
use the chip. 

The NS16082. This MMU supports 32-bit, demand- 
paged virtual memory architectures.3 It uses a com¬ 
bined segmentation/paging scheme to support the 
virtual memory architecture of the NS 16032. Because 
this chip offers a mechanism which seemed ideal for 
our system, we will briefly discuss the memory 
architecture it provides. 

The 16032 CPU has a logical address space of 16M 
bytes and a physical address space of 16M bytes, and 
each is partitioned into 512-byte pages. To minimize 
the mapping table size, designers used a two-level ap¬ 
proach. A logical address consists of two fields: an 
offset within the 512-byte page and a logical page 
number (Figure 2). This logical page number is parti¬ 
tioned into two subfields: an eight-bit page table en¬ 
try address (Index 1) and a seven-bit pointer table en¬ 
try address (Index 2). The eight-bit page table entry 
address specifies an index address for the first-level 
page table, which has 256 entries of 32 bits each. The 
MMU has two page table base registers, PTB1 and 
PTB2, one for the user and the other for the super¬ 
visor. Index 1 indexes into the page table, which has 
its base in PTB1 or PTB2. Each of the 256 page table 
entries contains a 15-bit physical page frame number 
that selects one of 256 pointer tables. Each pointer 
table has 128 pointer table entries. Index 2 indexes 
into the pointer table. Each pointer table entry is 32 
bits wide, and each generates a 15-bit physical page 
frame number. The least significant nine bits of vir¬ 
tual address are appended with this 15-bit physical 
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Virtual address 

23 16 15 98 0 

Figure 3. Logical to physical address translation in the NS16082. 

page frame number to generate the 24-bit physical 
address. The address translation process is shown in 
Figure 3. The MMU has 32 entries in its translation 
buffer (associative cache). If the associative compare 
results in an address hit, the translated address is 
generated quickly. However, if there is no match, the 
MMU refers to the page table and pointer table in 
memory and tries to update the buffer. 

Although the paging scheme implemented in the 
NS 16082 seemed ideal for an operating system sup¬ 
porting paging, this MMU had drawbacks that made 
us reject it: 

• It was rather expensive and difficult to obtain in 
fast versions at the time we were creating our design. 

• It is difficult to interface to an MC68000, 
because its bus architecture is different from that of 
the M68000 family. 

• Using this MMU would have introduced a con¬ 
siderable extra address delay time, due to the inter¬ 
face logic that would have been needed. 

The Bellmac-32. The Bellmac-32 MMU4 and the 
NS16082 are comparable in functionality, except that 
the NS 16082 supports paging only. Both have hard¬ 
ware to perform miss processing in an on-chip de¬ 
scriptor cache. A comparison of the Bellmac-32 and 
the MC68451 shows that the latter supports seg¬ 
mentation only (it treats paging as a special case of 
segmentation) but that it allows multiple MMUs to be 
connected to a single CPU. 

The Bellmac-32 MMU has the additional capability 
of supporting paged and unpaged segments. How¬ 
ever, because this chip was not available when we 
started our project and because the rotate mechanism 
we describe here seemed very promising, we did not 
further consider the Bellmac-32. 

Because existing single-chip VLSI MMUs either 
didn’t meet our requirements or weren’t yet available 
in working silicon, we decided to build our own 
MMU, realizing that this would not only enable us to 
meet our requirements but also give us experience in 
an important area of computer architecture. 
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Memory management on the 
VAX-11/750 

We had a VAX-11/750 with Berkeley Unix 4.1 in 
our laboratory, and we felt it could be useful to study 
the logical memory features of that architecture. We 
felt that if we could in some way simulate the VAX’s 
MMU mechanism, we could adapt Berkeley Unix to 
our single-board computer. 

Hardware. Here we will summarize the part of the 
VAX architecture that relates to memory manage¬ 
ment, as it is described in the VAX handbooks.5’6 
Figures 4, 5, and 6 illustrate some important features 
of the VAX memory architecture. 

The logical and physical address spaces are divided 
into 512-byte pages. Of the logical address space, one 
half (that with the most significant bit set) is referred 
to as system space. System space contains the operat¬ 
ing system software and system-wide data, which is 
shared by all processes. The other half of the logical 
address space is defined for each process; it is there¬ 
fore referred to as process space. Process space is fur¬ 
ther divided (on the next most significant address bit) 
into P0 space, in which program images and most of 
their data reside, and P1 space, in which the system 
allocates space for stacks and process-specific data. 
Because the PI space is used for stacks, it is allocated 
from high addresses downward. Each process has its 
own PO and P1 spaces, independent of others in the 
system. Figure 4 shows the address spaces of several 
processes. Each process space is independent of the 
others, while the system space is shared by all. Figure 
5 shows the logical and physical address format, in 
which the size of the physical address is taken to be 
32 bits long. (In fact, the width of this address is 
less.) The high-order two bits of a logical address im¬ 
mediately identify the space to which the logical ad¬ 
dress refers. Whether the address is physical or 
logical, the byte within the page is the same. 

The processor has three pairs of page mapping reg¬ 
isters for each of the three spaces actively used. These 
mapping registers are loaded by the operating system, 
along with the base address and length of the page 
tables. There is one active page table for each of the 
three spaces. A page table is a logically contiguous 
array of page table entries. Each page table entry rep¬ 
resents the physical mapping for one logical page. 
To translate a logical address into a physical address, 
the processor uses the logical page number as an in¬ 
dex into the page table from the given page table base 
address. Figure 6 shows the format of a page table 
entry. In concept, the process of obtaining a page 
table entry occurs on every memory reference. In 
practice, however, the processor maintains a trans¬ 
lation buffer, which is a special-purpose cache of 
recently used page table entries. When one of the 
page tables is updated, this translation buffer must be 
invalidated by a special-purpose instruction. 

Process 1 Process 2 Process 3 ... 

PO space 
(grows 
toward 
higher 
addresses) 

PI space 
(grows 
toward 
lower 
addresses) 

System 
space 

Figure 4. The address spaces of several processes in the 
VAX-11. 
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Figure 5. Logical and physical address formats of the 
VAX-11. 
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Figure 6. Page table entry format of the VAX-11. 
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Software. As mentioned before, the operating sys¬ 
tem used on our VAX-11/750 is Berkeley Unix 4.1, a 
descendant of the standard PDP-11 kernel implemen¬ 
tation. Readers not familiar with this implementation 
can become familiar with it by studying Lions’ com¬ 
mentary,7 the Unix kernel models developed by Pep- 
pinck,8 and the article on Unix implementation by 
Babaoglu and Joy.9 With a thorough understanding 
of the nonpaging Unix kernel, one can go on to the 
excellent report on paging in Berkeley Unix by van 
Someren.!0 The requirements imposed on the hard¬ 
ware by Berkeley Unix will be discussed later in this 
article. 

MC68010 paging support 
Because we chose the M68000 family architecture 

for our single-board computer and thus had to develop 
our MMU to fit that architecture, we should examine 
those aspects of the MC68010 that relate to memory 
management. 

The MC68010 is a VLSI, single-chip, 16-bit micro¬ 
processing unit with seventeen 32-bit registers.11 It is 
fully object-code-compatible with the earlier members 
of the MC68000 family and adds virtual memory and 
virtual machine support, and it has improved instruc¬ 
tion timing. 

The processor operates in one of two states of 
privilege: the supervisor state or the user state. The 
privilege state determines which operations are legal, 
and it determines the choice between the supervisor 
stack pointer and the user stack pointer in stack 
references. It may be used by an external memory 
management device to control and translate accesses. 

A bus error exception occurs when external logic 
terminates a bus cycle with a bus error signal. 
Whatever the processor was doing, it immediately 
begins exception processing. When a bus error oc¬ 
curs, a long stack frame (29 words) is used to save the 
entire state of the processor. This makes it possible to 
continue a partially completed instruction after the 
exception handler of the operating system has taken 
care of the memory reference problem that caused 
the bus error. 

A special status word in the stack frame along with 
the fault address are used by the bus error exception 
handler to determine the memory location and func¬ 
tion code at the time the bus error occurred. The 
RTE (return from exception) instruction is used to 
reload the processor’s internal state. The faulted bus 
cycle is then rerun and the suspended instruction 
resumed. 

The MC68000 is, in contrast to the MC68010, not 
capable of instruction continuation (which is required 
for operations such as block moves because a restart 
is not possible), and thus is not well suited to virtual 
memory applications. 

MMU requirements 
We wanted to use the Berkeley Unix 4.1 operating 

system on our single-board computer and, if possible, 
adapt it to our own paging memory management ar¬ 
chitecture. Here, we will summarize the requirements 
that Bsd 4.1 imposes on memory management hard¬ 
ware and point out some other design objectives that 

have to be met. 

VAX compatibility. Bsd 4.1 does not use all the 
memory management features of the VAX architec¬ 
ture, and it changes some features—and adds others 
of its own—in a software layer it places around the 
hardware. We will discuss the essential details. 

Address spaces. The mode of the processor (super¬ 
visor or user mode) does not influence the mapping 
performed by the memory management of the VAX 
and is only used for access checking. This results in 
only one logical address space formed out of the PO, 
PI, and S spaces. Although the PO, PI, and S spaces 
in the conventional VAX architecture each can be as 
large as 1G bytes, Bsd 4.1 restricts the maximum size 
in the following way: 

• The PO space, which contains the user mode text 
segment and data segment, is restricted to 12M bytes 
(6M bytes for the text segment and 6M bytes for the 
data segment). However, we have found no Unix ap¬ 
plication programs that grow over our VAX’s 2M- 
byte physical memory limit, although we could easily 
write a program exceeding this limit. 

• The PI space contains the user mode stack seg¬ 
ment, which is restricted to 6M bytes, and the user 
structure and kernel mode stack segment, which 
together occupy 4K bytes. As with the PO segment, 
the 6M-byte limit is way beyond the requirements of 
normal programs. 

• The S space contains the kernel code, kernel 
data, and a number of different subspaces. It re¬ 
quires almost 400K bytes. 

Closely connected to the VAX hardware are the 
page table structures. Our MMU has to recognize 
similar page structures (e.g., a PO, a PI, and an S 
page table). The entries in these tables contain at least 
the following fields: 

• A valid bit (V), which indicates that the hardware 
is allowed to use the remaining fields of this format. 

• A referenced bit (R), which actually is not sup¬ 
ported by the VAX architecture but simulated by 
software at the expense of considerable overhead.9 

• A modified bit (M). 
• A protection field (PROT). Bsd 4.1 needs only a 

supervisor write access bit, a user write access bit, 
and a user read access bit. 

• A page frame number (PFN). 
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Figure 7. Logical to physical address translation in our approach. 

Page size. Although the VAX hardware supports 
512-byte pages, Bsd 4.1 normally treats multiple 
hardware pages as one unit, thereby enlarging the ac¬ 
tual page size and raising performance.9 On our 
VAX system, with its 2M bytes of installed physical 
memory, the actual page size (determinable at system 
compile time) was chosen to be IK bytes. A page size 
of 2K bytes seemed the right choice for our single¬ 
board system, since programs and installed physical 
memory sizes tend to grow. 

DMA support. The governing design rule for our 
project was to build a system with a high perfor¬ 
mance/price ratio. Implementation as a single-board 
system, to eliminate a backplane and bus interface 
logic, was a logical consequence. Another conse¬ 
quence of this rule was that the DMA controllers12 
used in our system are only capable of generating 
physical memory addresses in a 64K range. Because 
all system logic is concentrated on a single board, it is 
possible to give the MMU a double function: trans¬ 
lating the addresses from the CPU and translating the 
addresses generated by the 64K DMA channels. A 
bus arbiter is required to merge the two address/data 
streams. The 64K address range coming from a DMA 
controller can be mapped by the MMU onto any ad¬ 
dress range within the physical memory space. 
Moreover, if the MMU is implemented with a paging 
mechanism that is also used for the mapping of DMA 
addresses, scatter/gather I/O can be performed 
because the I/O is done in the logical address space. 

Test and boot space. Another design objective is 
testability, which means that the system must be able 
to test itself during the power-on process and possibly 

indicate a faulty unit on the system console. If the 
MMU is not functioning correctly, the processor can¬ 
not access memory and I/O (if these are mapped on 
physical space). 

If one reserves a part of the logical address space 
for a so-called test and boot space, one can solve this 
problem. This test and boot space, which is addressed 
directly in logical space (without relocation or paging), 
contains test and boot software in read-only memory 
and the system console terminal interface. With this 
arrangement, the system can check the MMU function 
and all units that are accessed through the MMU 
(e.g., memory and other I/O devices) and report the 
results to the system console. Another advantage of 
this approach is that upon power-up of the system, 
the MMU mapping must be initialized. This action 
can be done in hardware, but it is cheaper to have the 
software perform this task. Upon power-up, the pro¬ 
cessor receives a RESET signal and fetches a restart 
vector containing an initial program counter and a 
supervisor stack pointer. These first four logical 
address references are forced to come from a special 
bootstrap ROM and point to a bootstrap program 
located in the test and boot space. This program can 
initialize the MMU to the desired mapping before any 
of the logical addresses that are mapped by the MMU 
are used. This requires accessibility to the MMU in 
the test and boot space. Since the test and boot space 
is not under control of the protection mechanism of 
the MMU, special hardware must ensure that an ad¬ 
dress reference falling in the test and boot space is 
legal only in the supervisor state. In the user state a 
bus error must abort the address cycle. Figure 7 
shows this logical to physical address translation 
scheme. 
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MMU architecture 
As we have seen above, the MMU will actually 

have to support three spaces (PO, PI, and S), whereas 
the part of the logical address space occupied by the 
test and boot space will need no mapping besides the 
rudimentary protection mechanism that allows access 
only when the processor is in the supervisor state. 

Our MMU accommodates PO, PI, S, and test and 
boot spaces in the total logical address space of 16M 
bytes (Figure 8). The PO space (for code and data) 
and the PI space (for the stack and user structure) 
are conceived as a single P (private) mapping con¬ 
sisting of 2K pages, each 2K bytes long, for a total of 
4M bytes. The S (shared) space also consists of 2K 
pages of 2K bytes each, totaling 4M bytes. A part of 
this space is reserved for DMA purposes, although 
this has no consequences for the MMU. Four mega¬ 
bytes are reserved for the test and boot space, which 
is more than sufficient. 

Shared space (S). The shared space is mapped by 
means of a conventional page table mechanism, 

whereby the table itself is contained in fast special- 
purpose memory chips residing in the MMU. The 4M 
bytes of the S space require 2K entries, each describ¬ 
ing a 2K-byte page in physical memory. Figure 9 
shows a logical address in the S space and its trans¬ 
lation to physical space. The fields in the page table 
entries are 

• INV, the invalid field (bits 29-24), in which INV 
= = 0 indicates a valid entry, 

• UW, the user write access field (bit 23), 

Logical address space 

0 4M 8M 12M 16M 

P space Reserved S space Test and boot 

Figure 8. The logical address space in our MMU. 

Logical address 

23 22 21 11 10 

Physical address 

Figure 9. Mapping in the shared (S) space. 
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• UR, the user read access field (bit 22), 
• SW, the supervisor write access field (bit 21), 
• R, the referenced bit (bit 19), 
• M, the modified bit (bit 18), 
• PFN, the physical page frame number (bits 10-0), 

and 
• X, the reserved bits (bits 31-30, 20, and 17-11). 

The page table entries constituting the S space are ac¬ 
cessible in the test and boot space as long words. 

Private space (P). The P space occupies the logical 
address region from 0 to 4M - 1, and the next 4M ad¬ 
dresses are reserved for future extension of the P 
space. The mapping used in the P space is process- 
dependent and must be altered on every process 
switch. In our MMU, the P0 space starts at logical 
address location 0 and grows upwards, and the PI 
space starts at logical address location 4M - 1 and 
grows downwards (Figure 10). 

Each process has its own page table for the P space 
in main memory. A memory management mechanism 
that could directly access these page tables located in 
physical memory would be very difficult to imple¬ 
ment and would certainly require some kind of trans¬ 
lation buffer. If we could provide a hardware page 
table like the one for the S segment for each 4M pro¬ 
cess space, we would only have to indicate to the 
MMU which table it has to use for the current pro¬ 
cess. Implementation of this mechanism would re¬ 
quire a vast number of high-speed RAM chips, and it 
is not feasible with the present state of the art. 

The rotate mechanism. Implementation of only 
one page table (which is feasible) would mean that 
many entries could be supplied with a new value on 
each process switch. Each entry that is invalid in both 
the current process and the new process could remain 
unchanged. However, all entries that are used by the 
new process, and those entries that are unused by the 
new process but were used by the current process, 
would have to be changed. In the worst case, this 
would mean that 2K entries would have to be changed, 
which would be quite time-consuming, especially if 
context switching were frequent. 

In our MMU, we found a compromise between the 
last two solutions. One should realize that of the 
possible 2K entries describing 4M bytes, only a small 
amount will be used by most programs. Measure¬ 
ments at our laboratory have indicated that the 
typical Unix program is small (that is, that P0 is 32K 
bytes and PI is 8K bytes). Many entries in most pro¬ 
grams therefore will have to be initialized to invalid. 
Furthermore, it is possible to limit the maximum 
number of processes—say 64—that can be loaded 
into core (swapped in). If we have 64 programs with 
an average size of 64K bytes (i.e., requiring 32 en¬ 
tries), 2K hardware page table entries will suffice, 

4M P space 

-> 0 

P0 

-> 
<- 

Unused 

-> 
<- 

PI 

-> 4M — 1 

Figure 10. The private (P) space. 

when entries are allocated as optimally as possible. 
A step in this direction is made in the way shown in 
Figure 11. The hardware page table is indexed with 
the logical page number plus an offset corresponding 
to the current process number multiplied by 32, so 
that indices higher than 2047 will be wrapped around 
(rotated). 

The problem is that processes can need page table 
entries that are already being used by another pro¬ 
cess. This is solved by giving the hardware page table 
entries an additional process number field and by 
supplying the MMU with a current process number 
register (also required for the appropriate offset 
value) that is loaded by the software with a new value 
on each process switch. When the current process 
generates an address resulting in a page table entry 
with a process number that does not correspond to 
the current process number, an abort signal is gener¬ 
ated to the processor. The bus error exception 
handler routine recognizes this situation and fills the 
faulting entry. The MMU, along with the software 
layer, functions as a cache for the actual page tables 
in main memory and is comparable to a direct map¬ 
ping mechanism.13 The resulting addressing mecha¬ 
nism is depicted in Figure 12. The page table entry 
contains the same fields as the one in the S space, 
except for the INV field, which is named PSN# (pro¬ 
cess number). 

The mapping process proceeds as follows: 

(A) The MMU combines the process number and 
the logical page number into an index in its hardware 
page table. 
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(B) If the page table entry contains a process num¬ 
ber matching the current process number, the map¬ 
ping process is continued at step D, else step C. 

(C) The MMU generates a bus error, after which 
the processor enters the exception handler routine. 
This routine determines from the exception stack 
frame the faulting logical address and the intended 
action. It now fetches the software page table entry 
for the page containing the faulting address. If the in¬ 
tended action is illegal according to this entry, step E 
is taken; otherwise, it means that the MMU faulted 
because of a process number mismatch. The appro¬ 

priate entry in the hardware table is now filled and 
the exception handler returns, causing the aborted 
memory cycle to be rerun and resulting in steps A, B, 
and D! (The modified and referenced information 
contained in the replaced hardware table entry must 
be saved.) 

(D) The process number matches, which means 
that the information contained in this page table en¬ 
try is valid for this process. (Totally unused entries 
have the reserved process number 0.) If the intended 
action (read/write in the supervisor or user state) is 
not allowed according to the access bits, step C is 

Process no.O 

P space 

Paged 

Pagel 

Page 2046 

Page 2047 

Process no. 1 

Pspace 

PageO 

Pagel 

Page 2046 

Page 2047 

-> 

Process 0 PageO 0 

Process 0 Page 1 1 

Process 1 Page 2046 30 

Process 1 Page 2047 31 

Process 1 PageO 32 

Process 1 Page 1 33 

Process 0 Page 2046 2046 

Process 0 Page 2047 2047 

Figure 11. The P space with rotating entries. 
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taken. Otherwise, the modified (M) and referenced 
(R) bits are updated (after the process number 
match), and the physical page frame number (PFN) is 
combined with the “byte in page” address part of the 
logical address to form the complete physical 
address. 

(E) A bus error is raised because of an access viola¬ 
tion (indicated via the MMU status register) or because 
of a detection by the software that the desired page 
was not loaded in physical memory (i.e., that a normal 
page fault has occurred). When a bus error is raised, 
the appropriate actions are taken by the operating sys¬ 

tem. These actions are not relevant to the MMU at this 
point. 

Performance considerations. The MMU hardware 
for the P space acts as a cache mechanism on the ac¬ 
tual page tables in physical memory. From the fact 
that it contains only those entries for virtual pages 
that are actually loaded in physical memory, and 
from the fact that most processes will use only a 
small part of their maximum virtual address space, 
we can conclude that bus errors resulting from a 
cache mismatch are very rare. However, the action 

Process number Processor logical address 

65 2 11 11 

Bus error 

31 
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needed on a cache miss is rather time-consuming (the 
equivalent of about 300 memory cycles or 150 ns). It 
consists of the following steps: 

• bus error acceptance plus a vector load 
operation, 

• pushing of the 29 words forming the long stack 
frame of the MC68010, 

• the saving of the registers that are going to be 
used by the exception handler routine, 

• the determination of the appropriate hardware 
page table entry according to the faulting address 
stored in the exception stack frame, 

• the recognition of a cache mismatch fault among 
other fault conditions such as protection violations, 

• the fetching of the length and location of the ap¬ 
propriate software page table and the selection of the 
right entry if this entry is valid, 

• the restoring of the entry in the hardware page 

table, 
• the reloading of the saved registers, and 
• the resumption of the aborted instruction accord¬ 

ing to the exception stack frame (i.e., the popping of 
the 29 words). 

The worst-case procedure is performed if, due to 
actions in the past, the MMU cache no longer con¬ 
tains entries for the just-restarted current process. If 
TV virtual address pages are referenced (with each 
page able to be referenced many times) during the 
time slice of this process, a maximum of TV cache 
misses occur, resulting in TV times 300 memory cycles. 
If, after a cache mismatch, a page does not appear to 
be loaded in physical memory, a page-in must be per¬ 
formed. After this page-in, both the software and 
hardware page table must be updated, but the over¬ 
head required for this is negligible compared to the 
total page-in time. 

(to CPU) (Physical address strobe) 

To/fromCPU 
Physical addresses 

Figure 13. Block diagram of our MMU. 
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Test and boot space. The test and boot space oc¬ 
cupies the region from 12M to 16M - 1. Logical ad¬ 
dresses falling in this range are used to directly ad¬ 
dress physical memory (including memory-mapped 
I/O registers), which is bound in hardware to the test 
and boot space. The test and boot space mapping is 
predetermined in hardware and requires no initializa¬ 
tion. Its “protection” mode is hardwired to allow ac¬ 
cesses only when the processor is in the supervisor 
state. Objects addressable in the test and boot space 
cannot be accessed in the other spaces. 

Implementation of the MMU 
Here, we present a short description of the hard¬ 

ware implementation of the MMU; other details of 
the actual hardware design can be found in de Rijk.14 
Figure 13 illustrates the hardware implementation. 
The signals to the left are connected to the CPU, and 
the lines at the right lead to the internal physical ad¬ 
dress bus. We can see that the MMU is composed of 
four parts: 

• A decoding section detects the appropriate space 
(P, S, or test and boot) of the current memory cycle 
and determines if this space is valid. 

• Address generation logic selects the appropriate 
entry in the memory array. This section also contains 
the necessary program space number register (PSN#). 

• A memory array holds the two page tables (one 
for the S space and one for the P space). 

• Validation logic determines if the selected page 
table attributes are valid for the current address cycle. 
If they are not, a bus error is generated to the CPU. 

The total address translation time is 90 ns. 

Our MMU represents a useful alternative to ex¬ 
isting single-chip implementations. Since the 
main goal of the single-board computer into 

which this MMU is integrated is to provide cheap 
processing power, the issues discussed here are more 
relevant than in the case of a single computer built to 
serve as a research vehicle. The RAM chips initially 
used in our MMU caused a total address delay of 120 
ns, but faster, 45-ns versions have become available. 
By using these chips, we have reduced the total ad¬ 
dress delay time to 90 ns. The total number of chips 
we used to implement the MMU amounts to about 
35, including the RAM chips. The total cost of the 
MMU’s components is about $60. 

Our MMU offers several advantages: 

• It has an address delay of 90 ns compared to the 
address delay of 217 ns for the MC68451 and 
NS16082. 

• It utilizes a paging technique for both the user 

and the supervisor space that results in efficient 
memory usage, especially when a virtual memory 
strategy is used. 

• It makes a fast process switch possible. 

• It can allow for permanently resident, shared 
libraries in the supervisor space, since the S space is 
visible to user programs and the page table entries in 
the S space contain a user read and write protection 
bit. 

• It implements a reference bit, which is very useful 
when designing a paging strategy. (The VAX architec¬ 
ture lacks this bit.) 

Moreover, the current single-board implementation 
of our system makes it possible to perform DMA 
through the MMU. 

However, our solution also has a few disadvantages: 

• No more than 64 processes can be swapped in, 
although this is not a severe restriction for a single¬ 
board system. 

• The price of our MMU is no lower than that of 
existing single-chip MMUs, and in time the price of 
single-chip units will drop. 

• Our design utilizes a large number of chips con¬ 
suming a substantial amount of board space and 
power. The use of gate arrays could improve this, 
however. 

• No Unix version exists that is already adapted to 
our MMU, although Berkeley Unix could be changed 
relatively easily to meet its requirements, provided 
enough physical memory is installed to hold the 
massive, permanently resident kernel code (138K 
bytes) and fast disks are used. 

The current state of our project is that Unix 
System V has been modified to support the MMU in 
such a way that pages can be scattered throughout 
main memory during the time they have to be resi¬ 
dent; that is, demand paging is not used but a scat¬ 
ter/gather approach is taken instead. This is a first 
step toward full demand paging, and it has been 
planned as a modification of a System V demand¬ 
paging release that is not available yet. 

Several subjects have not been discussed here and 
could be investigated in future work: 

• The hit rate of the MMU cache for the P space. 
• Alternative page sizes. 
• The allocation of process numbers to processes. 

If the total of 64 swapped-in processes is not reached, 
one could allocate process numbers with the largest 
gaps possible (e.g., two swapped-in processes could 
get process numbers 0 and 31). 

• Hardware improvements (possibly using new 
chips). These could result in smaller delay times and 
fewer components. 

• Hardware support for automatically loading a 
table entry upon a cache miss. This could be similar 
to that provided by the NS 16082. 

June 1987 33 



Amore 

• Space extension. If the 4M-byte P space were ex¬ 
tended to 8M bytes, it would be possible to extend 
the total number of swapped-in processes that could 
be allowed or increase the offset factor from 32 to 64 
pages, m 
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By implementing a capability- 
oriented addressing scheme, tagged 

storage, and a single-level-store 
approach to memory management, 
and by providing hardware support 
for multitasking, this architecture 

reduces the semantic gap. 

o 
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o 

\Q 

OF A 

CAPABILITY-BASED 

MICROPROCESSOR 

SYSTEM 
Paolo Corsini, University of Pisa, Italy 

Lanfranco Lopriore, Consiglio Nazionale delle Ricerche, Italy 

Computer designers have often paid too little attention to reducing the distance be¬ 
tween architectures and their operating environments.1 This distance, the so-called 
semantic gap, is a problem that involves basic aspects of computer organization such 

as operating systems, programming language implementation, and programming environ¬ 
ments. In particular, 

• operating systems are poorly supported in their primary functions, such as memory 
management and protection, separation of privileges between tasks, interrupt servicing, and 
resource sharing, 

• compilers receive little help in implementing basic concepts of modern high-level lan¬ 
guages such as data abstraction and multitasking, and 

• programmers obtain little assistance from the underlying machine in the test and debug 
phases of software development. 

Here, we present the results of research aimed at the definition and implementation of a 
microprocessor-based advanced architecture whose main goal is the reduction of the seman¬ 
tic gap. This architecture is oriented toward high-level languages supporting modular decom¬ 
position of programs, user-defined data abstraction, and concurrency. Its salient features are 
a capability-oriented addressing scheme, an approach to memory management based on the 
concept of a single-level store, implementation of tagged storage by the tagging of memory 
segments, and significant hardware support for multitasking. 

We present this architecture with particular reference to object types and memory manage¬ 
ment, and we evaluate it according to how well it reduces the semantic gap. We also show 
how it has been implemented as a research prototype in which the central processing unit has 
been built around an off-the-shelf microprocessor and in which an intelligent memory device 
autonomously supports the memory management functions. 
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Capability-based Microprocessor 

The architecture 
In our architecture, we have departed from the 

traditional von Neumann concept of a uniform, linear 
storage space. Instead, we follow an object-oriented, 
capability-based approach.2-3 Essentially, tasks see the 
storage space as a single pool of objects. The architec¬ 
ture defines a set of mechanisms that make it possible 
to create and delete objects. When a new object is 
allocated, a unique identifier is assigned to that object. 
This identifier is never modified during the life of the 
object and, after the object has been deleted, is never 
used to name another object. 

Objects are supported by a very large segmented vir¬ 
tual memory space. This space is partitioned into 
areas. Each implementation of the architecture (that is, 
each machine) is configured so it can allocate the seg¬ 
ments of a specific area. Areas are provided mainly to 
support unique identifiers, even across the boundaries 
of a single machine. If any kind of information flow is 
to occur between two or more machines (through a 
network, or even just through a transportable storage 
medium such as a tape), those machines must be as¬ 
signed to as many different areas. 

Each object is contained entirely in a single segment, 
and the address of this segment in the virtual space is 
equal to the identifier of the object. Each segment is 
partitioned into three fields: a length field, a tag field, 
and an internal representation field (Figure 1). The 
contents of the length field specify the size of the inter¬ 
nal representation field. The contents of the tag field 
specify the type of the object implemented in the seg¬ 
ment. And the contents of the internal representation 
field represent the value of the object. 

A task can access a given object only if it holds a 
capability for that object. A capability is an un- 

Length field 

Tag field 

Internal 
representation 
field 

Figure 1. Virtual memory segment implementing an object 

whose identifier is ID. Both the length and the tag fields are 

at negative offsets, whereas the internal representation field 

extends to positive offsets, from offset 0 to offset L. 

forgeable, protected pointer that includes not only the 
object identifier, ID, but also an access right specifica¬ 
tion, AR. The architecture guarantees the integrity of 
capabilities, and the only modifications it allows are 
restrictions of access rights. However, it does permit 
capabilities to be freely copied so that access privileges 
can be transmitted. 

A set of virtual processors is implemented by the 
hardware of the CPU. This hardware performs the 
operations of one virtual processor at one time, and 
this processor is called the running virtual processor. 
Each virtual processor is provided with its own set of 
capability registers. A capability register can store a 
long capability. This is a quadruple {ID,L,Tag,AR} 
obtained by extending the capability {ID,AR} by 
means of the quantities L and Tag, which are con¬ 
tained in the segment implementing the object identi¬ 
fied by ID. To reference an object in memory, a task 
attached to the running virtual processor must load a 
capability for that object into a capability register of 
the virtual processor. 

Seven object types are supported by our architec¬ 
ture, and their operations are implemented by machine 
instructions. These types are the code space, the data 
space, the capability space, the task descriptor, the 
virtual processor image, the family factory, and the 
family root. 

Code spaces, data spaces, and capability spaces. 
Code spaces store instructions in executable form. 
Data spaces allow all the usual arithmetical and logical 
operations to be performed on them. Capability spaces 
allow capabilities to be stored in memory. A capability 
space is a collection of capabilities. A capability in a 
capability space can be converted into a long capability 
and then loaded into a capability register to access the 
object it references. Conversely, a long capability in a 
capability register can be converted into the short for¬ 
mat and then stored into a capability space. 

Multitasking. Multitasking is supported by task 
descriptors and virtual processor images. The entire 
state of a single task (including the task stack) is stored 
in a task descriptor. The contents of a virtual processor 
image specify whether a task is attached to the virtual 
processor associated with that image. Attaching a task 
to a virtual processor means loading the state of that 
task from the task descriptor into the virtual processor. 
Detaching the task means copying the task state from 
the virtual processor into the task descriptor. In this 
way, different tasks can be attached to a given virtual 
processor at different times. The CPU can be caused 
to execute a given virtual processor, and this results in 
executing the task attached to that virtual processor at 
that t’me. As we will show later, the dualism of task 
descriptors and virtual processor images is aimed 
mainly at effective management of the set of virtual 
processors implemented by the CPU hardware. 
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Object types 

Code spaces. A code space stores instructions in 
executable form. 

Operations. A single action is defined on a code 
space—that is, the instructions contained therein. 
This action is made possible by the access right EX¬ 
ECUTE. The operations defined on code spaces 
relate to program control. 

An example is the CALL operation. CALL trans¬ 
fers control to the instruction at a given offset of a 
given code space (Figure A). The old contents of the 

program counter are saved in a stack, the domain 
stack, which stores information about control trans¬ 
fers inside the same domain. 

Data spaces. A data space is a collection of en¬ 
tries. Each entry contains a data value. 

Operations. All the classical arithmetical and logical 
operations are defined on data spaces. An operation 
causing a reading or writing action on the contents of 
a given data space is made possible by the access 

Figure A. Actions involved in 
the execution in the rth virtual 
processor VPr of the call-to- 
subroutine instruction CALL 
((c)) W. This instruction trans¬ 
fers control at offset u> of the 
code space addressed by CR^ 
(i.e., the cth capability register 
in VPr). The program counter 
PClr> is partitioned into a seg¬ 
ment number field and an off¬ 
set field. The contents of the 
segment number field specify 
the capability register storing 
the instruction to be fetched 
next, at the offset specified by 
the contents of the offset field. 
The execution of this instruc¬ 
tion loads the quantities c and 
w into the segment number 
field and the offset field, respec¬ 
tively. The old contents of 
PCW are saved in the data 
space addressed by the capabil¬ 
ity register, say CR($, whose 
index m is specified by the con¬ 
tents of R%. This data space 
implements the domain stack, 
and the top of the stack is 
pointed to by the contents of 
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right READ or WRITE for that data space. 
Examples of operations for the data space type are 

LOAD and STORE. LOAD accesses the word at a 
given offset of a given data space and loads the con¬ 
tents of this word into a general register. This opera¬ 
tion is made possible by the access right READ for 
the data space. STORE copies the contents of a 
given general register into the word at a given offset 
of a given data space. This operation is made possi¬ 
ble by the access right WRITE for the data space. 

Capability spaces. A capability space is a collec¬ 
tion of entries. Each entry contains a capability. 

Operations. The operations defined on capability 
spaces make it possible to move capabilities between 
capability registers and the main memory, and to 
transfer control from one subject to another. 

LOAD_CAPABILITY converts the capability 
stored in a given entry in a capability space into a 
long capability. This long capability is then loaded 
into a capability register (Figure B). This operation is 
made possible by the access right TAKE for the capa¬ 

bility space. 
STORE_CAPABILITY converts the long capabil¬ 

ity contained in a given capability register into a ca¬ 
pability. This capability is then stored in memory, into 
an entry of a given capability space. This operation is 
made possible by the access right GRANT for the 
capability space. 

ACTIVATE_SUBJECT allows a subject S to acti¬ 
vate another subject S' of the same task on the 
same virtual processor. The state of S is saved into 
the task stack inside the descriptor of the task. This 
stack contains information about control switches 
across domain boundaries. The capability for the 
base of the domain of S' is loaded into a capability 
register. Control is transferred at offset 0 of the code 
space referenced by the u>th capability in the base of 
S' (w is a parameter of the operation). Execution is 
made possible by the wth activate access right, 
namely ACTIVATE_w, for the base. 

DEACTIVATE_SUBJECT transfers control back 
to the subject whose state is stored at the top of the 
task stack. The state of S is restored with quantities 
popped from the stack. 

Figure B. Actions involved in 
the execution of the instruction 
LOAD_CAPABILITY #«c», 
((c')) w. The capability stored in 
entry w of the capability space 
addressed by CR$ is extended 
by means of the contents of the 
L and Tag fields of the segment 
implementing the object 
referenced by that capability 
and then loaded into CR$. 

Capability registers 

I « 
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Virtual processor images. A virtual processor 
image contains the name of a virtual processor and a 
flag. This flag, if set, specifies that a task is attached 
to that virtual processor. 

Operation. RUN_VP starts execution of the vir¬ 
tual processor associated with a given virtual pro¬ 
cessor image. This operation is made possible by the 
access right RUN for the image. 

Task descriptors. A task descriptor stores the 
entire state of a single task (including the task stack). 

Operations. ATTACH_TASK attaches a task to 
the virtual processor associated with a given virtual 
processor image. The state of the task is loaded from 
its descriptor into the virtual processor, and the flag 
inside the image is asserted. This operation is made 
possible by the access right ALLOCATE for the im¬ 
age and the access right ATTACH for the descriptor. 

DETACH_TASK detaches the task attached to 
the virtual processor associated with a given virtual 
processor image. The state of the task is copied from 
the virtual processor into the descriptor of that task, 
and the flag inside the image is cleared. This opera¬ 
tion is made possible by the access right DEALLO¬ 
CATE for the image. 

Family factory. A single object of the family fac¬ 
tory type exists throughout the life of the system. At 
any given time, this object contains the name of the 
next family to be generated. 

Operation. A single operation, GENERATE_ 
FAMILY, is defined on the family factory. 
GENERATE__FAMILY allocates the family whose 
name is contained in the family factory. The contents 
of the factory are then incremented. Thus, the fac¬ 
tory always contains the name of the next family to 
be generated. This operation, which is made possible 
by the access right GENERATE for the family factory, 
returns a capability for the root of the family allo¬ 
cated. This capability includes three access rights: 
ENABLE, USE, and INITIALIZE. These access 
rights are relevant to memory management. 

Family roots. The root is the first object allocated 
in a family. At any given time, it contains the iden¬ 
tifier of the next object to be created in that family. 

Operations. After a root has been allocated by the 
GENERATE_FAMILY operation, it must be initial¬ 
ized by executing the INITIALIZE_ROOT opera¬ 

tion. INITIALIZE_ROOT sets the root to contain 
the identifiers of the first object to be allocated inside 
the family after the root itself. This operation is made 
possible by a capability for the root with the access 
right INITIALIZE. The operation modifies the access 
right field of this capability to contain the whole set of 
the create access rights. These access rights permit 
execution of the create operations. 

Five create operations make it possible to allocate 
and initialize new objects. 

CREATE_CAPABILITY—SPACE allocates a 
capability space in the family of a given root and 
returns a capability for this space. This operation is 
made possible by the access right CREATE_CA¬ 
PABILITY_SPACE for the root. The capability 
space is initialized to contain null capabilities (i.e., ca¬ 
pabilities whose identifier fields are formed entirely of 
l’s). The operation may fail, however, and this oc¬ 
curs if the size of the capability space to be created is 
greater than the size of the residual free portion of 
the family. 

CREATE_CODE_SPACE, CREATE_DATA_ 
SPACE, CREATE_TASK_DESCRIPTOR, and 
CREATE_VP_IMAGE both allocate and initialize a 
code space, a data space, a task descriptor, and a 
virtual processor image. The actions involved in the 
execution of these operations are suggested by their 
names. 

Four memory management operations allow the 
running task, say task T, to manage storage re¬ 
sources according to its own memory requirements. 

ENABLE FAMILY allows T to enable a given 
family. Execution of this operation fails if there is not 
enough free space in the bulk memory. This opera¬ 
tion is made possible by the access right ENABLE for 
the root of the family. 

USE_FAMILY allows T to state that it is a user of 
a given family. Execution causes an attempt to open 
the family. This attempt fails if there is not enough 
free space in the main memory and if there is no 
open family suitable for being swapped out (i.e., no 
family used by at most one process that is blocked). 
This operation is made possible by the access right 
USE for the root of the family. 

RELEASE_FAMILY allows T to state that it no 
longer uses a family. The family is not swapped out 
immediately but will be swapped out eventually, 
when there is a lack of free space in the main 
memory. This operation is made possible by the ac¬ 
cess right USE for the root of the family. 

REMOVE-FAMILY allows T to remove a family. 
Execution frees the memory areas reserved for stor¬ 
age of the family in both the bulk memory and, if the 
family is open, in the main memory. This operation 
is made possible by the access right REMOVE for the 
root of the family. 
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Protection domains. The capabilities inside a capa¬ 
bility space may reference objects of any type and, in 
particular, other capability spaces. In this way, capabil- 

Segmented virtual 
memory space 
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Figure 2. Organization of the segmented virtual memory 
space. The first object of a family F is the root of that family. 

At any given time, the root contains identifier ID'y’of the 

next object (say, the ith object) to be allocated in F. After 

allocation of this object, the root is updated to contain the 

identifier ID ;+?!• This is given by the relation ID = 

ID^ + 1*^, where 1^ is the dimension (in bytes) of the ob¬ 

ject identified by ID®. Flowever, allocation can actually be 
carried out only if no family overflow occurs. 

ity spaces can be organized into arbitrarily structured 
graphs. A protection domain is a graph shaped in such 
a way that all the objects it references can be reached 
by starting from a specific capability space (called the 
base of the domain), by means of the capabilities con¬ 
tained therein. When a task is attached to a given vir¬ 
tual processor, the capability registers of that virtual 
processor must store both the capability for the de¬ 
scriptor of that task and the capability for the base of 
a domain. These two capabilities together univocally 
identify the subject—that is, the pair {task, domain} 
—active on that virtual processor. A subject S can ac¬ 
tivate another subject S' of the same task on the same 
virtual processor. The state of S is saved onto the task 
stack. Conversely, S' may deactivate itself and transfer 
control back to the subject S, whose state is stored on 
the top of the task stack. 

Object creation. Memory management strategies are 
based on objects being grouped into families. Families 
are fixed-size units used for swapping between the bulk 
memory and the main memory as well as for garbage 
collection. A few families are generated by the boot¬ 
strap firmware; these are called bootstrap families, and 
the objects they contain relate to the resident portions 
of the system kernel. One such object is the family fac¬ 
tory. At any given time, the family factory contains 
the name of the next family to be generated. Genera¬ 
tion allocates the first object in the new family. This 
object, the root of the family, belongs to the family 
root object type; at any given time, it contains the 
identifier of the next object to be allocated in the fami¬ 
ly (Figure 2). A capability for the root makes it possi¬ 
ble to allocate and initialize new objects in the family. 

Memory management. A given family is enabled 
when a portion of the bulk memory is actually re¬ 
served for storage of that family. An enabled family is 
open when it also resides in the main memory; other¬ 
wise, it is closed (if it is stored only in the bulk 
memory) or it is swapping in or swapping out (if it is 
being copied from the bulk memory into the main 
memory or vice versa). An enabled family may be 
removed to free its portions of the bulk memory and, 
possibly, main memory; thereafter, all the objects in 
that family are lost (it will never be possible to refer¬ 
ence them again). An object belonging to a given fami¬ 
ly can be accessed only if that family is open (always 
the case for a bootstrap family). A task may declare 
that it is a user of a given family. This means that once 
the family has been opened, it can be swapped out only 
if the task is its sole user and it is blocked. 

Each task manages its own memory requirements by 
means of a set of operations—the memory manage¬ 
ment operations—that works on family roots. These 
operations allow the task to enable a family, become a 
user of a family, release (that is, cease using) a family, 
and remove a family. 
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Address, data, and control bus 

Figure 3. Hardware configuration of the prototype of the architecture. 

Implementing the architecture 

The hardware configuration of a prototype of our 
architecture is shown in Figure 3. A central processing 
unit accesses a pool of storage resources. These consist 
of an intelligent memory device (IMD) supporting 
memory virtualization, a set of read-only and read/ 
write memory banks reserved for the storage of boot¬ 
strap families, and the memory-mapped interfaces of 
source/sink I/O devices (each interface being ad¬ 
dressed in the same way as a data space in a bootstrap 
family). 

The central processing unit. The CPU is based on a 
Zilog Z8001 microprocessor.4 Ad hoc logics provide 
for capability processing and emulate the instructions 
implementing the operations of most object types. The 
instruction set consists of the following: 

• All the standard instructions of the Z8001. 
Essentially, these implement the operations relating to 
code and data spaces. 

• Special instructions, wholly emulated inside the 
CPU. These support the operations of all the other ob¬ 
ject types defined by the architecture, the only excep¬ 
tions being the memory management operations. 

• Memory management instructions. These imple¬ 
ment the memory management operations. They are 

fetched by the CPU but are actually executed inside 
the IMD. 

At any given time, the instruction to be fetched next is 
addressed by the contents of the program counter of 
the virtual processor running at that time. The pro¬ 
gram counter consists of a segment number field and 
an offset field. The contents of the segment number 
field specify a capability register in the set of capability 
registers associated with the virtual processor. This 
capability register references the code space being exe¬ 
cuted, and the offset of the instruction inside this code 
space is specified by the contents of the offset field. A 
similar mechanism is used to access an operand inside 
a data space. An address, as included in the instruction 
formats of the Z8001, consists of a segment number 
field and an offset field. The contents of the segment 
number field specify the capability register referencing 
the data space involved in the access. 

Besides the program counter and the capability reg¬ 
isters, the architectural interface of each virtual 
processor includes all the registers defined by the ar¬ 
chitecture of the Z8001. (The only exception is that the 
system/normal bit is not supported.) Moreover, a 
priority register specifies the priority of the task at¬ 
tached to the virtual processor. (As will be shown 
shortly, task priorities are relevant to interrupt han¬ 
dling.) Virtual processors are supported by a scratch¬ 
pad read/write memory forming an array of capability 
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registers (Figure 4). Moreover, a read/write memory 
implements a save area for the contents of the general- 
purpose registers, the program counter, and the flag 
and control registers of all nonrunning virtual pro¬ 
cessors. Finally, an ad hoc read-only memory stores 
the firmware emulating the special instructions. When 
this firmware is being executed, the microprocessor 
runs in its supervisor state; therefore, the supervisor 
state is considered a microprogram state. 

Interrupt sources are partitioned into priority 
classes. An interrupt request coming from a source 
belonging to a given class, say class C, is accepted only 
if the priority of the task attached to the running vir¬ 

tual processor is less than or equal to C. When ac¬ 
cepted, the request is converted into a call to a specific 
task associated with class C, the interrupt task, and 
permanently attached to the Cth virtual processor. Let 
us examine this in greater detail. The name of the vir¬ 
tual processor that has been interrupted is pushed onto 
a firmware-handled interrupt stack inside the CPU. 
(This stack makes it possible to nest interrupts.) Then, 
the name of the interrupting source is stored into a 
general register; in this way, this name is made avail¬ 
able to the interrupt task. Finally, the Cth virtual pro¬ 
cessor is made to run. After having carried out the ac¬ 
tions implied by the interrupt request, the interrupt 

ft 

Figure 4. Logic diagram of the central processing unit. 
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task may suspend itself by means of the parameterless 
special instruction INTERRUPT_HANDLED. Execu¬ 
tion of this instruction consists essentially of accessing 
the interrupt stack and popping the name of the vir¬ 
tual processor previously interrupted. This virtual pro¬ 
cessor is then made to run. 

The intelligent memory device. The IMD is designed 
to support memory management. The CPU transmits 
the memory management instructions to the IMD by 
means of a memory-mapped communication channel. 
This channel consists of a few data spaces, all included 
in the same bootstrap family. The IMD contains the 

hardware and software resources it needs to execute 
memory management instructions (and, in particular, 
to perform family swapping) autonomously and in 
parallel with the operations of the CPU. Suppose that 
one such instruction is issued by a task / attached to 
the running virtual processor. The CPU only needs to 
transmit that instruction to the IMD and then switch 
to run a different virtual processor. The IMD generates 
an interrupt request upon completion of the execution 
of the instruction. The interrupt task honoring this re¬ 
quest then returns control to t. 

A block diagram of the actual configuration of the 
IMD is shown in Figure 5. A Z8001-based computer 

To/from address, data, and control bus 

To/from interrupt bus 

Figure 5. Block diagram of the intelligent memory device. 
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Logical 
address 

inside an 
instruction 

(To the Z8001) 

Figure 6. Translation of a logical address into a physical address in the memory banks. As a consequence of the way in which 
objects are generated (see Figure 2), the name of the family of the object being referenced is specified by the most significant 
bits of the identifier of that object. Moreover, the least significant bits represent the base of the segment implementing that ob¬ 

ject in the memory area in which the family is actually stored. 

element inspects the communication channel by busy¬ 
waiting. After ascertaining the availability of an 
instruction from the CPU, the computer element exe¬ 
cutes the software routines implementing that instruc¬ 
tion. (These are contained in the read-only memories 
inside the computer element itself.) If the need arises 
for a swapping action, the computer element simply 
activates a direct memory access device, which then 
performs the actual transfer of information between 
the large storage units and the random-access memory 
banks. This leaves the computer element free to start 
execution of another instruction available in the com¬ 
munication channel. 

Address translation. Figure 6 shows how a logical 
address (as specified in a machine instruction) is trans¬ 
lated into a physical address in the memory banks. As 
stated previously, a logical address consists of the 
name i of a capability register and an offset w. A limit 
violation checker compares the contents of the length 
field of the capability register with the offset and even¬ 
tually generates a limit violation (actually, a segment 
trap) to the Z8001. Since this is not the case, the name 
of the family of the object referenced by the capability 
register is used to access an associative map, the family 
relocation map. This map is contained in the IMD. In 
this way, the address of the portion of the main 
memory reserved for that family is obtained. The base 
of the segment implementing the object inside this 

memory portion is then added to the offset and paired 
with the address of the family to finally obtain the 
physical address in the main memory. 

Conceptually, the family relocation map should 
have one entry for each family in the main memory. 
Because technological constraints forbid fast 
associative memories of such depth, the associative 
behavior of the map is emulated as follows. A hash 
table, called the family relocation table, is imple¬ 
mented via software in the read/write memories of the 
computer element inside the IMD. The family reloca¬ 
tion map is a buffer in which recently used family 
names are mapped into the corresponding memory ad¬ 
dresses. Each entry of the family relocation map con¬ 
sists of a tag field and an address field. The least 
significant bits of the family name select a specific en¬ 
try of the map. The most significant bits are compared 
with the contents of the tag field of this entry. If a 
match is found, the address translation is successful 
and the contents of the address field actually represent 
the starting address of the family in the main memory. 
Otherwise, an interrupt request is generated to the 
computer element. As a consequence of this interrupt 
request, the computer element performs a hash search 
in the family relocation table and loads the missing in¬ 
formation into the family relocation map. Note that a 
failure in this hash search means that the family is not 
open; in this case, the access attempt to the main 
memory is aborted and an interrupt request is sent to 
the CPU for notification of the failure. 
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Figure 7. Configuration of a domain D implementing an object O of the abstract data type T. 

Evaluation of the architecture 
We faced several major decisions in designing our 

architecture. In particular, we had to devise strategies 
to ensure that it actually addressed the semantic gap 
problem. 

Capability-based addressing. The major advantage 
ensuing from a capability scheme for memory address¬ 
ing is effective runtime support for the implementation 
of abstract-type objects. 

User-defined data abstraction. The importance of 
user-defined data abstraction as a major step toward 

structured programming is now widely appreciated. 
Facilities for the definition of abstract data types are 
common features of modern high-level programming 
languages. However, in a conventional addressing en¬ 
vironment, the encapsulation of an abstract object, as 
specified by the high-level source code, is lost after 
compilation into machine code. This is not the case in 
a capability environment,5'6 in which a protection 
domain hides the implementation of the object even at 
runtime, throughout object life. 

Let us refer, for instance, to an object O of the 
abstract data type T. The configuration of domain D 
implementing O is shown in Figure 7. Code spaces R,, 
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k2,..„ R„ store the routine for the operations of type 
T. Data spaces Pp P2.P„, contain the local 
variables that form the internal representation of O. 
Capability space PRM is used for the transmission of 
the capabilities for both the input parameters and the 
output parameters of the operations. The capabilities 
for these objects are grouped together in the base BD 
of D. To execute the rth operation, a subject S must 
first store the capabilities for the parameters into 
PRM. Then, it must activate domain D and start exe¬ 
cution of the routine contained in R;. This routine 
then uses the capabilities in BD to read the value of the 
input parameters, access the internal representation, 
and store the results of the operation into the output 
parameters. At completion of execution, the routine 
returns control to S. In this way, the representation of 
O may be accessed by the environment of the object 
only through the operations of the type. 

Control over distribution of access privileges. Con¬ 
trol over the distribution of access privileges is at the 
single-object level. Granularity is, therefore, much 
finer than in traditional architectures, which define 
only a few protection states (supervisor and user states, 
for instance). Any classification of programs as system 
and user programs is given up. Each program has its 
own set of access rights, and this set is the smallest one 
allowing the program to carry out its job. (This is the 
principle of least privilege.2) This feature can be im¬ 
portant for error confinement as well as for fault 
detection, recovery, and retry. Moreover, it can provide 
help in all phases of software development. 

Object sharing. A task holding a capability for a 
given object is free to transfer that capability to 
another task. In this way, the latter gains access 
privileges to the object. No intervention of the 
operating system is required. Indeed, flexibility in 
dynamic sharing of objects was the original reason for 
the introduction of the concept of a capability.3 

Dangling references. The identifier of a deleted ob¬ 
ject is never used again for another object. Any at¬ 
tempt to utilize a capability to access a deleted object 
produces an access violation. Unique identifiers there¬ 
fore represent an effective solution to the problem of 
dangling references. 

Tagged memory. Every capability architecture must 
somehow prevent unauthorized accesses to the internal 
structure of capabilities.7 Indeed, alteration of the 
contents of a capability may jeopardize the integrity of 
the whole protection system. A simple solution to this 
problem is to enforce separation of capabilities from 
data. This separation may be achieved by codifying 
the types of the entities contained inside an object in 
all the capabilities referencing that object, by means of 
different configurations of the access right fields. For 

instance, a capability for a capability space 
will never specify the access right WRITE, which 
makes it possible to freely modify the contents of that 
capability space. 

A different approach consists of adding a one-bit 
tag to each memory cell; this bit specifies whether that 
cell contains a capability or not.2 This approach, 
however, relies on specialized memory banks able to 
store cell tags. Moreover, whenever a portion of the 
main memory is swapped from/to the bulk memory, 
the relevant tag information needs to be swapped too, 
and this can be carried out efficiently only by ad hoc 
hardware. These disadvantages make the tag approach 
worth adopting only if it is used throughout the ar¬ 
chitecture, not only to separate capabilities from data 
but also to mark the other object types supported by 
the instruction set.8 Indeed, if the specification of the 
type of an object is included in the object itself, it is 
possible to check at runtime whether the operations 
applied to that object are congruent with the object 
type. This may be useful, for instance, for detecting 
erroneous read accesses to uninitialized objects and for 
facilitating program debugging. 

Our aim has been to enjoy all the advantages of 
such a type-safe environment but avoid the problems 
created by tag storage.9 To this end, we have included 
the specification of the type of each object in a tag 
field within the segment implementing the object itself. 
This approach does not imply any specialized tech¬ 
nique for information swapping. Moreover, with 
respect to the approaches mentioned above, it has the 
advantage of saving memory space. Indeed, with this 
approach a type specification has to be given only 
once for each object and does not have to be repli¬ 
cated in every capability for that object, or even in all 
the memory cells in which the object is stored. 

Support for multitasking. A considerable drawback 
of capability-based systems is their need to convert a 
capability into the appropriate physical address upon 
each access to an object in memory. Most architectures 
partially solve this problem by including capability reg¬ 
isters: for an object to be accessed, a capability for 
that object must be loaded into one such register. The 
contents of capability registers can be managed by ad 
hoc instructions or loaded autonomously by the micro¬ 
code.7 Visible capability registers have a potential for 
greater effectiveness. A drawback, however, is that a 
great deal of information must be saved at each task 
switch. This problem is even more serious if for kernel 
components such as interrupt tasks we wish to main¬ 
tain the same degree of separation of privileges existing 
for user tasks. 

These considerations convinced us of the need to 
make the CPU able to support several virtual proces¬ 
sors. Indeed, as long as a task is attached to a virtual 
processor, that task can be run by issuing a single 
machine instruction, without incurring the time over- 
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head mentioned above. 
The dualism of tasks and virtual processors allows 

us to create more tasks than the number of virtual pro¬ 
cessors actually implemented by the hardware. When a 
task T becomes ready and a virtual processor is avail¬ 
able, a scheduler attaches T to this virtual processor. If 
a virtual processor is not available, the scheduler 
detaches a task T' blocked with a low priority and at¬ 
taches T to the virtual processor freed in this way. By 
working in this way, the scheduler will never detach a 
high-priority task. This is true, in particular, for inter¬ 
rupt tasks, each of which is attached permanently to a 
specific virtual processor. 

Single-level store. A program written in a high-level 
programming language supporting the decomposition 
of programs into modules includes a great deal of in¬ 
formation concerning memory usage. For instance, 
each module includes a visibility list specifying the 
names of the other modules that module can access. 
However, traditionally no such information is utilized 
for memory management. Instead, the execution of 
the machine code is inspected at runtime by an in¬ 
dependently developed memory management system. 
This system tries to rebuild its own idea of the memory 
requirement of the running task by utilizing its own 
model of task behavior.10 We believe that a better 
approach is 

• to have the architecture include a set of memory 
management instructions that allow the running task 
to supply information concerning its own future need 
of memory resources, and 

• to have the compiler generate memory manage¬ 
ment instructions in the object code that are coherent 
with the specifications of memory usage in the source 
program. 

As a matter of fact, the instructions for memory 
management we have included in our architecture 
allow tasks to move families of objects through a two- 
layer physical memory hierarchy consisting of a fast- 
access main memory and a disk-based bulk memory. 
By doing so, these instructions implement the concept 
of a single-level store.1 The salient features of this 
approach are discussed below. 

Object life. The life period of an object is indepen¬ 
dent from that of the task creating that object. The 
object is deleted only when its own family is removed. 
Arrays provide not only for storage of short-term, 
small-sized objects in main memory but also for the 
permanent storage of large amounts of data. (In the 
latter case, files would be the traditional choice.) The 
greater homogeneity that ensues leads to generality in 
programs.1 For instance, we only need a single routine 
even if the size of its parameters is such as not to allow 
us to store them in main memory. (An ad hoc I/O 
routine would have to be added in a conventional 
memory environment.) 

Object size. No lower limit is imposed by the ar¬ 
chitecture on average object size. This feature is essen¬ 
tial if we want to fully exploit the salient characteristics 
of an object-oriented organization.11 A single table, 
the family relocation table, allows us to carry out the 
translation of the identifier of a given object into the 
address of that object in the physical memory. The 
number of entries in this table is equal to the number 
of families that may reside in the main memory at the 
same time. Each family has a capacity of 21? bytes; the 
memory requirement for storage of the family reloca¬ 
tion table is, therefore, quite low. Moreover, the 
dimension of families is independent of the average 
memory requirements for storage of a single segment. 
It follows that object size can be kept as small as 
desired, up to a lower limit of a few bytes for small¬ 
sized object types, without congesting I/O devices with 
a lot of swapping activities that each involve a small 
amount of data. 

On the other hand, the fixed dimension of families 
implies an upper limit to object size. This drawback, 
however, is easily obviated. A large object unsuitable 
for storage in a single family is partitioned into a num¬ 
ber of smaller objects, and these are allocated to dif¬ 
ferent families. These smaller objects are included in 
the same domain. Suppose we activate this domain to 
carry out a specific operation on the composite object. 
We need to open only those families that actually con¬ 
tain components required for the actions involved in 
the operation. 

Fragmentation. The size of a family is 213 bytes. In 
the organization of a conventional system, swapping 
units of such an unusually large size would be likely to 
raise great fragmentation problems. In our approach, 
the compiler has control over the creation of objects 
inside families. As a result, fragmentation can be kept 
to a minimum. 

The RISC approach. At present, the debate con¬ 
cerning the supposed advantages of reduced- 
instruction-set computer (RISC) architectures over 
complex-instruction-set computer (CISC) architectures 
seems far from resolution.12’13 The benefits claimed 
for RISCs include higher code density, a consequence 
of their shorter instruction formats. However, several 
RISC instructions are often needed to express the ac¬ 
tions contained in a single CISC instruction. RISCs 
can have smaller microprograms, leaving a larger chip 
area that can be profitably used for features such as 
on-chip caches and pipelining. However, it is probably 
far easier to enhance the performance of high-cost 
functions such as floating-point operations by ad hoc 
logic in a CISC architecture than it is in a RISC one. 

The well-known fact that a few instruction opcodes 
cover most instruction executions suggests that a RISC 
design can be profitably tailored to a specific program¬ 
ming language. But it may well be difficult to maintain 
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the same advantages across a multiplicity of languages, 
since the sets of highly used instructions in those lan¬ 
guages may differ substantially. (For instance, the 
Inmos Transputer RISC architecture is designed to 
support a specific programming language, Occam.) In 
compiler writing, an orthogonal instruction set simpli¬ 
fies code generation, and a hardware-supported high- 
level operation on a data type is often translated into a 
single instruction. However, a complex instruction that 
does not behave exactly as the compiler writer desires 
will probably never be used and, therefore, represents 
a useless complication of the architecture. 

In our opinion, the strongest arguments in favor of 
RISCs are their shorter design time and improved 
testability. Design of RISCs is faster because of the 
comparative simplicity of their architecture, and their 
testability is enhanced by the small size of their 
microprograms. The result is not only reduced devel¬ 
opment costs but higher quality implementations, since 
designers can more easily use the latest technology. In 
addition, they can employ novel concepts in important 
aspects of computer organization such as the specifica¬ 
tion of operating systems and programming languages. 

In our experiments, we added new instructions to 
the complex instruction set of the Z8001 (see box). At 
the hardware level, our CPU design effort involved 
implementing the ad hoc logic needed to support the 
activity of the microprocessor. At the software level, 
we had to write the routines emulating the special in¬ 
structions. These routines required 680 Z8001 instruc¬ 
tions (less than 2800 bytes of machine code). The 
routines relevant to the execution phase of the 
LOAD_CAPABILITY and STORE_CAPABILITY 
instructions, for instance, consist of 28 and 20 Z8001 
machine instructions, respectively, and the memory re¬ 
quirement for their storage is 128 and 96 bytes. 
Eighty-two instructions (with a memory requirement 
of 328 bytes) were needed for the ACTIVATE_ 
SUBJECT routine. 

Therefore, in our experiments we have been suc¬ 
cessful in achieving a short design time and fast debug¬ 
ging. We were able to do this in a CISC architecture by 
using a conventional microprocessor in a novel way. 
Our complex instruction set is not simply the result of 
adding powerful instructions to a conventional von 
Neumann organization. We used special instructions 
and the segmented memory scheme of the Z8001 to 
implement advanced architectural features such as ca¬ 
pability-based addressing and tagged memory. The 
salient advantages of these features have been de¬ 
scribed already. We are convinced they are worth the 
introduction of further complexity into the architec¬ 
ture, even at the expense of possible CPU performance 
degradation. Even this degradation may be able to be 
dealt with by increasing parallelism in the operations, 
which is what we did in our architecture for the in¬ 
telligent memory device. 

Why we chose the Z8001 

The segmented memory scheme of the Z8001 
allowed us to utilize its standard instruction set un¬ 
conventionally. An address generated by the Z8001 
consists of two components: a segment number and 
a byte number. We brought the visibility of capability 
register names up to the assembly language level by 
simply mapping each of the 16 first segment num¬ 
bers into the name of one such register. The ability to 
do this was the main reason we used the Z8001. 

Of course, this feature is not essential. A linear ad¬ 
dress, as generated by most microprocessors, can be 
easily translated into a pair {capability register name, 
offset} by reserving the most significant bits of the 
address for specification of the register name. In¬ 
deed, the only true requirement for the microproces¬ 
sor is that enough address lines be available. This 
precludes the use of a microprocessor with a small 
address space (e.g., 216 bytes). 

The high-level-language architecture approach. The 
arguments for and against high-level-language 
machines have been discussed in depth by Ditzel and 
Patterson.14 We are convinced that adequate hardware 
support should be provided to critical kernel functions. 
On the other hand, we wished to avoid the perfor¬ 
mance penalties that ensue when an instruction set 
optimized for a specific high-level language is used to 
implement languages for other classes of applications 
(e.g., when Lisp or Cobol is implemented on a 
Pascal or C machine). Therefore, we did not use a 
high-level-language architecture for our computer 
organization. Users are in fact aware of the trans¬ 
formation of their program from the source language 
into machine language. This was a conscious design 
choice. We did not include special instructions im¬ 
plementing language-specific features such as inter¬ 
process communication and fault treatment, for exam¬ 
ple, even though such features are supported by the 
instruction set of a machine like the Intel iAPX 432, 
which is tailored to the Ada language.15 

In fact, our architecture strongly supports the im¬ 
plementation of high-level languages providing 
modular decomposition of programs, user-defined 
data abstraction, and concurrency. We do not rely on 
an ad hoc software structure, but we hypothesize a 
compiler taking advantage of the supports provided by 
the architecture for access mode checking, memory 
management, and tasking. 
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CPU performance. The performance of the CPU 
will now be analyzed in terms of capability loading 
and storing, domain switching, and task switching. 

Capability loading and storing. About 310 clock 
cycles are required to emulate the execution phase of 
the LOAD_CAPABILITY instruction. At present, the 
Z8001 microprocessor operates with clock frequencies 
of up to 10 MHz. Our prototype features a 6-MHz 
clock; it follows that the execution time for this in¬ 
struction is about 52 microseconds. The STORE_ 
CAPABILITY instruction takes 220 clock cycles, or 37 
microseconds. (The main reason for the different time 
performance of the two instructions is that execution 
of the LOAD_CAPABILITY instruction accesses the 
segment referenced by the capability involved. This ac¬ 
cess is required to convert that capability into a long 
capability.) Despite the very limited information trans¬ 
fer and data processing involved in a capability load 
and store, it can be seen that the execution times for 
these instructions are comparatively high. (The time 
taken to execute a Z8001 integer multiply instruction 
on 32-bit operands depends on the number of 1 ’s in 
the multiplicand; it is 400 cycles on average. An in¬ 
teger divide instruction on operands of this size is car¬ 
ried out in about 725 cycles.) 

Let us consider the routine relevant to the STORE_ 
CAPABILITY instruction. The contents of the capa¬ 
bility register involved are copied in memory by two 
Z8001 instructions in 54 cycles, whereas access right, 
tag, and limit checks are carried out in 166 cycles. Of 
course, a microprogram implementation could easily 
save most of these cycles by carrying out checks in 
parallel with memory accesses. Even at the emulation 
level, a mask register and a bound register (together 
with proper comparison logic) would allow us to 
reduce check times considerably. However, no such 
registers are at present included in our prototype. We 
have instead reduced the need for load and store 
capabilities by providing each virtual processor with 16 
capability registers. These registers greatly help an 
optimizing compiler maintain a capability for a given 
object in the same register for as long as that object is 
likely to be referenced. This improves code perfor¬ 
mance in terms of both time and space. 

Domain switching. Domain switches have always 
been considered the critical operation in capability en¬ 
vironments. They have received considerable attention 
not only because of their high intrinsic cost but also 
because of their widespread use. Poor domain switch 
times cause the programmer to design his protection 
domains far larger than necessary for access control, 
object encapsulation, and object sharing. This occurs, 
in fact, in the Hydra operating system, in which more 
than 50 milliseconds are required to switch to the 
domain of the file system. This poor performance is of 
course a consequence of the fact that Hydra carries 

out domain switches entirely by software. On the other 
hand, the Cambridge CAP computer implements pro¬ 
tection domain switching by microprogram, and the 
time it takes to switch from one domain to another 
and back again is 240 microseconds. In our architec¬ 
ture, the execution phase of the ACTIVATEJSUB- 
JECT instruction is emulated in about 2400 cycles, or 
600 microseconds with a 6-MHz clock frequency, 
whereas the DEACTIVATE_SUBJECT instruction 
takes about 1800 cycles, or 300 microseconds. Of 
course, timing comparisons between different ma¬ 
chines give crude performance estimates, as they do 
not take into account important architectural factors 
such as word size. (The CAP is a 32-bit computer, for 
example.) 

We can derive a rough best-case estimate of 
microprogram execution times by considering the 
number of memory accesses. Let us take the AC- 
TIVATE_SUBJECT instruction as an example. Exe¬ 
cution of this instruction copies the contents of a 
whole set of capability registers, of the program 
counter, and of the stack pointer onto the task stack. 
A long capability referencing a code segment is also 
loaded into a capability register. (Execution of the new 
subject will start in this code segment.) The size of a 
capability register is eight words, and a Z8001 read or 
write sequence takes three clock cycles. Therefore, a 
microprogram implementation of this instruction re¬ 
quires at least 400 cycles. An inspection of the routine 
emulating the ACTIVATE_SUBJECT instruction 
reveals several sources of time loss. More than 400 
cycles are used for access right, tag, and limit checks. 
As mentioned previously, adequate hardware support 
would reduce this check time by at least one order of 
magnitude. Another time-consuming activity is the in¬ 
validation of capability registers, an operation needed 
to preserve the integrity of the objects in the domain 
being abandoned. We have actually made this activity 
faster by associating a flag—the VALID flag—with 
each capability register. A given capability register can 
be used to reference an object in memory only if its 
VALID flag is set. The flag is actually asserted when a 
capability is loaded into the register, and it is cleared 
during execution of the ACTIVATE_SUBJECT and 
DEACTIVATE_SUBJECT instructions. However, we 
had to implement the capability registers by means of 
random-access memory chips, and this is by far the 
greatest drawback to good time performance. In fact, 
with this approach, copying the contents of capability 
registers to/from the main storage becomes a memory- 
to-memory operation taking nine clock cycles for each 
word actually transferred. 

The ACTIVATEJSUBJECT and DEACTIVATE_ 
SUBJECT instructions involve almost the same num¬ 
ber of information transfers with the main memory. 
Therefore, at microprogram level, these two instruc¬ 
tions would have about the same cost. However, the 
DEACTIVATE_SUBJECT instruction involves neither 
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access right checks nor capability register invalidation. 
(It should be remembered that this instruction restores 
the contents of all registers with quantities popped 
from the task stack.) This is the reason for the much 
shorter emulation time of this instruction compared to 
that of the ACTIVATE_SUBJECT instruction. 

Most modern high-level languages allow programs 
to be decomposed into concurrent, cooperating tasks 
to solve problems of large dimensions. In this ap¬ 
proach, programmers are encouraged to enforce privi¬ 
lege separation by providing a task for each protection 
domain rather than by causing a single task to switch 
between many different domains. If this is done, do¬ 
main switch times become less important than task 
switch times. 

Task switching. We have taken great care to 
enhance efficiency in task switching. In fact, the mul¬ 
tiple sets of capability registers permit us to perform a 
task switch by issuing a single instruction—i.e., a 
RUN_VP instruction—that takes 940 clock cycles. 
This is nearly half the time required by a software im¬ 
plementation of the same kernel function in an en¬ 
vironment with a single set of capability registers. 
Furthermore, in such an environment, even a micro¬ 
program implementation of the RUN_VP instruction 
would take more than 900 cycles. Indeed, the state of 
a task includes the whole content of the capability reg¬ 
isters, the general registers, and the status registers, 
and this content (150 words) must be transferred twice 
at each task switch. 

Of course, task switching times would be enhanced 
by at least one order of magnitude in an architecture 
featuring multiple on-chip sets of both capability regis¬ 
ters and general registers. We feel that this may well be 
a suitable way to use silicon area for maximized per¬ 
formance. 

Nine-hundred clock cycles are required to carry out 
the execution phase of both the ATTACH_TASK and 
the DETACFLTASK instructions. However, since 64 
sets of capability registers are available in our architec¬ 
ture, we seldom need to issue these instructions. In 
fact, after a task has been attached to a given virtual 
processor, it will probably never be detached before 
termination. 

Pipelined execution of memory management in¬ 
structions. Each memory management instruction is 
processed by a two-stage pipeline. Control is switched 
from the running task as soon as it issues one of these 
instructions. This prevents the first stage of the 
pipeline (i.e., the CPU) from filling up (unless the im¬ 
probable situation of all the ready tasks needing a 
memory management activity occurs). Furthermore, 
because a task is supposed to enable a family only 
when it actually needs to access an object in that 
family, the pipe never needs to be emptied and perfor¬ 
mance degradation is avoided. As far as timing is con¬ 

cerned, CPU activity is not slowed down. This is 
essentially a consequence of the structure of the mech¬ 
anism for address calculation. In particular, the family 
relocation map has been implemented so that memory 
cycle times are not extended. Of course, the CPU must 
be forced into a wait state if a miss occurs in the map 
when the contents of the map are being updated by the 
computer element inside the IMD. 

We must point out that the hardware support we 
have provided in the IMD for low-level memory 
management activities is not a salient aspect of our ar¬ 
chitecture but only a feature of our particular im¬ 
plementation of it. The memory management instruc¬ 
tions could well be implemented by software routines 
and executed by the CPU. Of course, this would result 
in a loss of parallelism in the operation. 

The most important choice we made in designing 
our architecture was the one to use a capability- 
based addressing scheme. This decision dates 

back to the earliest stages of our research. It was dic¬ 
tated mainly by our previous studies on the semantic 
gap and, in particular, on the implementation of 
abstract object types.5-6 Other aspects of our architec¬ 
ture benefited from the decision, too. The single-level 
store, for instance, had a positive impact on garbage 
collection and allowed us to take advantage of the 
modularized structure of programs, even though we 
introduced this approach to memory management 
mainly as a solution to a serious drawback of capabil¬ 
ity organizations, the cost (in both processing time and 
memory requirements) of mapping object identifiers 
into physical addresses in the main memory. Similarly, 
we saw tagged memory segments mainly as a means of 
segregating capabilities from data, although this tag¬ 
ging scheme influenced the whole structure of the soft¬ 
ware; in particular, it caused a vertical migration of 
object encapsulation down to the hardware level. 

As far as implementing the architecture was con¬ 
cerned, our most important decision was to use an off- 
the-shelf microprocessor for the CPU. Another basic 
choice was the one to support the kernel functions of 
memory management by means of ad hoc processing 
power. Neither of these decisions had a major impact 
on the architecture. We hope our experiment will en¬ 
courage the use of conventional microprocessors for 
the implementation of novel architectures and ad¬ 
vanced machine organizations, si 
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An added preemption 

facility clearly 

improves earlier 

schemes for imple¬ 

menting this hack- 

plane bus used with 

32-bit microprocessors. 

The performance of a multi-microprocessor system depends to a 
great extent on the facilities provided by the backplane bus 
through which the microprocessors are interconnected. For the 

new generation of 32-bit microprocessors, several buses have been 
introduced or proposed. These include the Motorola VMEbus, the Texas 
Instruments Nubus, the Intel Multibus II, the IEEE 960 Fastbus, and the 
IEEE 896 Futurebus. There has been much discussion of their relative 
merits.1"5 

The most ambitious appears to be Futurebus. It is asynchronous, it re¬ 
quires no centralized control, it supports fault-tolerant and cache-based 
architectures, and it allows modules to be added or removed while the 
system is running (live insertion and withdrawal). Edwards and Peyton- 
Jones discussed the importance of these facilities.6'7 

The technical details of Futurebus appeared in several articles pub¬ 
lished in IEEE Micro in August 1984. These articles described the scheme 
as it existed in Draft 6.2 of the Specification. Among them was an article 
I wrote on the arbitration and control acquisition arrangements.8 At the 
end I pointed out that the article did not necessarily represent the final 
word and that further improvements might yet be made. This has indeed 
happened, and the present article explains what these improvements are 
and what advantages they give. 

The main improvement is the introduction of a preemption scheme, 
which ensures that modules urgently needing the bus are not kept waiting 
any longer than necessary. We also corrected the calculations concerned 
with the settling time of the arbitration circuits and improved the scheme 
whereby a module newly live-inserted into the bus establishes syn¬ 
chronism with the modules already working. 

Main features of the Draft 6.2 scheme 
In this early scheme, modules requesting control of the bus signalled 

their request over bus line AC to the module currently in control, known 
as the current master or, more briefly, the master. The master module 
responded at a suitable time by starting the control acquisition pro¬ 
cedure. This procedure consisted of a sequence of six operations. 

During operation 1 modules decided whether or not they were com¬ 
peting for the bus on this occasion, and during operation 2 arbitration 
took place using the well-known parallel scheme common to IEEE 696 and 
several other buses. The purpose of operation 3 was to check for arbitra¬ 
tion errors, and assuming none were found, operation 4 provided the master 
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with time to finish its data transaction. In operation 5 
modules carried out the various tasks needed when 
control of the bus was transferred; in operation 6 
modules registered the identity of the new master. 

During the above procedure, the operations in the 
various modules were kept in synchronism using the 
three bus lines AP, AQ, and AR. The technique is 
very similar to that used for the data strobe and 
acknowledge signals in Trimosbus.9 

Another feature of the scheme was the division of 
the modules into two classes, a priority class whose 
members competed for the bus whenever they needed 
it, and a fairness class whose members, once having 
had control of the bus, were barred from competing 
for it a second time until no unfulfilled bus requests 
remained. Removal of the bar took place during a 
three-operation procedure, initiated as with the main 
procedure, by the current master. 

A deficiency of the Draft 6.2 scheme 
Suppose that one or more bus requests arose while 

the master was carrying out its data transactions. The 
ideal time for the master to start the control acqui¬ 
sition procedure would be shortly before its trans¬ 
actions were complete, so that the end of the trans¬ 
actions coincided as nearly as possible with the end of 
operation 3 in the control acquisition procedure. But 
estimation of this time would have been difficult and 
would have required extra software. What was much 
more likely to happen, therefore, was that current 
masters would either have delayed starting the ac¬ 
quisition procedure until their transactions were 
finished, which would have reduced the bus through¬ 
put, or they would have started it as soon as a bus re¬ 
quest was received. 

In the latter case the next master, known as the 
master elect, could have been chosen early in the 
current master’s tenure of the bus, resulting in its 
spending a substantial part of its total tenure period 
in operation 4. A problem could arise if, during that 
period, a priority-class module developed an urgent 
need for the bus; there was no way for it to signal its 
request to the master. It would have had to wait not 
only until the master had finished with the bus but 
until the master-elect had finished as well. The 
changes to the control acquisition scheme, described 
below, overcome this problem by allowing the 
priority-class module to displace the master-elect, an 
arrangement known as preemption. 

Unchanged features 
Before describing the changes, it is worth drawing 

attention to the features that remain the same. They 
are: 

• The arbitration method. This still works exactly 
as described in the 1984 article8; that is to say, each 
module is assigned its own 7-bit arbitration number. 

Compete Arbitration lines 

Figure 1. Arbitration logic. This is a pure logic diagram showing 
the relationship between Boolean variables rather than between 
electrical levels. The parity bit anO is chosen to give odd parity 
over an6 to anO. 

During arbitration the module applies this number 
through open-collector stages to seven corresponding 
bus lines, AB6 to ABO, all of them active-low. (As in 
the 1984 version, the asterisks commonly used in 
IEEE documents to distinguish active-low from 
active-high lines have been omitted in the interests of 
simplicity. The lines now designated AB were 
previously designated AN. The change was made to 
avoid an inconsistency in the specification.) 

At the same time the module monitors the lines, 
and if it is applying a 0 to a line but senses that the 
line is carrying a 1 (applied by another module), then 
for as long as this condition persists, it ceases apply¬ 
ing all its arbitration-number digits of lower 
significance. The result is that when the circuit has 
settled to a steady state, the AB lines carry the 
highest of the arbitration numbers applied by the 
competitors, and the module with this arbitration 
number is the winner. A suitable logic circuit is 
shown in Figure 1. 
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• The synchronization method. This method still 
follows the same principles as before, but there are 
differences of detail; a complete description appears 
later. Also, some of the actions in the procedure have 
been transferred to different-numbered operations; 
for example, error checking now takes place in opera¬ 
tion 5 and hand-over tasks, in operation 6. 

• Fairness and priority classes. These two classes, 
and the rules governing the circumstances under 
which their members may compete for the bus, are 
unchanged. 

Changes in the control acquisition 
procedure 

In the following explanation we say a signal is 
asserted when it has the value binary 1, and released 
when it has the value binary 0. As with the AB lines 
all the bus lines are driven from open-collector stages 

and are active-low; that is, they all carry out the 
wired-OR function, binary 1 being represented by the 
less-positive level. The variables that an individual 
module applies to the bus lines are denoted by lower¬ 
case letters and the bus lines themselves, by the cor¬ 
responding capital letters. 

Starting. Instead of being started by the current 
master, the control acquisition procedure is now 
started by any module requiring the bus; this includes 
modules that are barred by the fairness rule from 
taking part in arbitration. A module starts the pro¬ 
cedure by asserting bus line AP. 

Synchronization method. Rather than describing 
the synchronization method in terms of changes, I ex¬ 
plain the method “from scratch ”so it will be clearer, 
particularly for readers not too familiar with the 
earlier article. The objective, as before, is to keep all 
the modules synchronized throughout the acquisition 
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procedure; that is, to ensure that no module can start 
operation (/+ 1) until all have finished operation /'. 

Basic method. Consider a group of modules of dif¬ 
ferent speeds that have to carry out a sequence of 
operations in synchronism as indicated above. The 
operations form a loop, so that as soon as the slowest 
module completes the last operation in the sequence, 
all modules start the first operation over again, and 
so on ad infinitum. We start at the point in the loop 
where all the modules are engaged on the first opera¬ 
tion, operation 1, but none have yet finished it. At 
this point, ap, aq, and ar in all the modules, and 
therefore the signals on bus lines AP, AQ, and AR, 
are 1, 0, 1 respectively, as shown in Figure 2. This 
means AP and AR are asserted and AQ is released. 
The way in which these signals change as the 
sequence progresses is as follows: 

1) As soon as each participant completes its first 
operation, it releases its ar. Only when the slowest has 
done so will line AR be released. In the example 
shown, the slowest module is seen to be n. 

2) All participants respond to the release of AR by 
asserting their aq and starting their second operation. 
As soon as they complete it, they release ap. The 
release of AP indicates that the slowest has finished. 
In this example it again happens to be n. 

3) All participants respond to the release of AP by 
asserting ar and starting their third operation. When 
they have completed it, they release aq, and similarly, 
the release of AQ indicates that the slowest has 
finished (this time, module B). 

4) All participants respond to the release of AQ by 
asserting ap and starting their fourth operation. On 
completing it, they release ar. 

The process continues as above, the bus signals in 
operation 4 being the same as in operation 1, those in 
operation 5 being the same as in operation 2, and so 
on. Therefore, if the state of the bus lines at the 
beginning of the sequence is always to be the same, 
which in Futurebus is a requirement, the number of 
operations in the sequence has to be an integral mul¬ 
tiple of 3. Table 1 summarizes the bus-line states as 
the sequence progresses. 

A problem with wired-OR lines such as AP, AQ, 
and AR, is that the release of a line by one module 
while another is still holding it asserted can cause a 
glitch to appear on the line. This results from the 
change in the current-flow pattern. Futurebus solves 
the problem by taking the relevant bus-line receiver 
outputs through integrators and threshold circuits. 
These are designed so that the longest possible glitch 
or succession of glitches that can last for up to twice 
the end-to-end propagation time of the bus will not 
cause the threshold circuit to switch. The maximum 
propagation time in Futurebus is 12.5 ns, and so the 
integrator/threshold circuit combination must sup¬ 
press glitches lasting for 25 ns or less. 

Table 1. 
Bus-line synchronization signals. 

State AP AQ AR 

Op 1 in progress 1 0 1 
Op 1 complete 1 0 /0 
Op 2 in progress 1 1^ 0 
Op 2 complete 0^ 0 
Op 3 in progress 0 1" —1 
Op 3 complete 0 ^0 1 
Op 4 in progress l'*' 0 1 

(as Op 1) 

Method as applied to Futurebus. The new 
Futurebus sychronization method has several features 
in addition to those described above. They are as 
follows: 

• Sequences are of two possible lengths: a three- 
operation sequence for cancelling the arbitration bar 
in fairness modules and a six-operation sequence for 
normal arbitration and transfer of control. The de¬ 
cision as to which length of sequence is required is 
made shortly after the sequence starts (operation 2) 
and is stored internally in all participating modules. 

• Strictly speaking, the number of separate opera¬ 
tions needed in the longer sequence is only four. But 
this sequence is extended to the required figure of six 
by allowing the settling of the arbitration circuits to 
spread over operations 2, 3, and 4. This gives faster 
overall performance than does the alternative of 
introducing dummy operations (no-ops). 

• A pause is introduced during operation 1 to wait 
for one or another of the potential masters to request 
control of the bus. This occurs as follows. When 
modules detect AQ switching to 0 and indicating that 
the last operation in the preceding sequence is fin¬ 
ished, they do not automatically assert ap. The 
module or modules requiring the bus assert ap first, 
and the remainder follow suit only when they detect 
that AP is asserted. Until this happens, no module is 
permitted to signal the end of operation 1, that is, by 
releasing ar. 

• A pause is introduced during operation 5 mainly 
to wait for the current master to finish its bus trans¬ 
actions. This occurs in similar fashion to the above. 
When AR switches to 0 indicating that all modules 
have completed operation 4, modules do not auto¬ 
matically assert aq. The first one to do so is either: 

1) a requester, if there is no current master; (The 
absence of a current master will have been detected in 
operation 1 by all the AB lines being released; see 
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START of SEQUENCE 

- initial assertion of AP by any bus requestor (including fairness-barred), 

or by recompeting master (see Table 2) 

R. 

r 
- op 1 wait - -op 1 completion H 

Status Operation 

FB.BB. 
CP.BR.OB 

Register identify of mastf r if needed 

FB If making a bus request 
switch status to CP 

BB If making a bus request 
switch status to BR 

CP.RM Assert ac ; 
store u (Note 1) 

FB.BB 
BR.CM 

Release ac 

CM If recompeting switch 

status to RM 

-op 2 - -►M op 3 ► op4^^4- 

Status Operation 
I_1 

All Register that this 
is a 6-op. sequence ' 1 

i i 

CP.RM Apply arb. no to AB lines 

CM Remove arb. no from AB lines 

CP.CM.RM Time an interval t# 

Status Operation 1 

All Register that this is 

1 
j No-op 

a 3-op. sequence 
i 

BR Switch status to CP i 

BB Switch status to FB 
i 
i 

Figure 3. Control acquisition sequence. The two-letter status designations are defined in Table 2. 

Note 1 in Figure 3.); 
2) any potential master detecting an error in the 

arbitration that has just taken place; 
3) a priority-class module seeking to displace the 

master-elect (preemption); or 
4) the current master, when it has finished its bus 

transactions. The remaining modules do not assert 
their aq until they detect AQ asserted, and only after 
this has happened are they permitted to release ap 
indicating that they have finished operation 5. 

Operations 1 and 5 may therefore be thought of as 
being divided into two periods: a wait period that 
lasts until the appropriate variable, ap or aq respec¬ 
tively, is asserted, and a completion period that lasts 
from then until the required operation is over. Note 
that the wait period can be arbitrarily short; for in¬ 
stance, a bus request can be presented immediately 
after the preceding sequence finishes, possibly by a 
fairness module whose bar to arbitration has just 
been cancelled; a module that lost in the preceding 
arbitration; or a module that caused preemption to 
take place. In operation 5 the wait period can be ar¬ 
bitrarily short if there is no master. 

Table 2. Module status. 

Designation Meaning 

FB Free 
bystander 

BB Barred 
bystander 

CP Competitor 

Definition 

A module not at the 
time barred under the 
fairness rule and not re¬ 
questing control of the 
bus 

A module barred by the 
fairness rule from taking 
part in arbitration and 
not requesting control of 
the bus 

A module requesting 
control of the bus and 
free to take part in 
arbitration 
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initial assertion of AQ by the master when its bos transactions are finished, 
by the master-elect if u = 0 (see Note 1). by a pre-emptor. by a recompetmg 
master (see Table 2), or by any module detecting an arbitration error 

J” 
"*u is the OR-function of 
the digits on the AB lines; 
u = 0 indicates that there 
is no master. 

2A module may preempt 
only if it is a priority-class 
requestor whose 
arbitration number is 
greater than AB, or to 
broadcast an emergency 
message. 

3When a module changes 
status during operations 
5 or 6, its other actions 
are determined only by its 
initial status. 

Table 2 (cont’d.) 

Desig¬ 
nation Meaning Definition 

BR Barred 
requestor 

A module requesting 
control of the bus but 
barred by the fairness 
rule from taking part in 
arbitration 

CM Current 
master 

The module currently in 
control of the bus 

ME Master- 
elect 

The competitor that has 
won the immediately 
preceding arbitration but 
has not yet become 
master 

OB Observer A module that never 
requires control of the 
bus but takes part in the 
control acquisition pro- 

Desig¬ 
nation Meaning Definition 

cedure to synchronize 
certain tasks with other 
modules1 

RM Recompeting A status assumed by the 
master master to initiate a 

dummy control acquisi¬ 
tion procedure2 * * * * * 

1 The tasks that an observer may have to carry out in¬ 
clude: (a) registering the identity of the current master, 
(b) unlocking other interfaces on completion of the 
master’s bus transactions, and (c) receiving emergency 
messages. 

2 The master can initiate a dummy control acquisition 
procedure if it finishes its data transactions before any 
other module requests control of the bus. The purpose is 
to prevent other interfaces in the slaves from remaining 
locked for any longer than necessary (p. 368). Alter¬ 
natively, the master can unlock its slaves using the data- 
transfer portion of the bus. 
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The new procedure 
The flow diagram in Figure 3 presents details of 

the new control acquisition procedure; Table 2 gives 
the meaning of the various two-letter status designa¬ 
tions. The main features of the procedure are de¬ 
scribed here. 

Operation 1. Modules register the identity of the 
current master, that is, the number on the AB lines. 
Any module or modules requiring control of the bus 
assert ap to start the procedure, and if not barred 
under the fairness rule, assert ac. 

Operations 2, 3, and 4. Competing modules engage 
in arbitration and time an interval ta to allow the ar¬ 
bitration circuits to settle. The value of ta is discussed 

later. 

Operation 5. All potential masters check for ar¬ 
bitration errors. Modules finding an error or carrying 
out preemption assert ac to prevent bus mastership 
from being transferred and assert aq to restart the se¬ 
quence. Otherwise, modules wait until the sequence is 
restarted by the current master after it has finished 
using the bus. Note that a module may preempt 
another only if it is in the priority class and if its ar¬ 
bitration number is higher than that of the master- 
elect, that is, higher than the number on the AB lines. 

Operation 6. If AC = 0, indicating that control of 
the bus is to be transferred, the master-elect becomes 
the new master, and all modules cancel any locking 
operations imposed during the previous bus tenure. If 
AC = 1, the current master remains in control, and 
all the conditions that existed before the sequence 
started are reestablished. 

Emergency messages 
The preemption feature in the new scheme pro¬ 

vides a powerful method of broadcasting emergency 
messages such as warning of an imminent power 
failure. One pays a price for this facility in that each 
possible emergency message reduces by one the num¬ 
ber of priority-class modules that can be accom¬ 
modated. But in practice this is unlikely to be a 
serious limitation. The method is as follows. 

Suppose that a total of four different emergency 
messages is required. The four contiguous numbers at 
the top of the priority-class range of arbitration num¬ 
bers represent these messages. The highest number, 
that is, 1111111, represents the most urgent message, 
and the lowest number, 1111001, represents the least 
urgent. (Note that the least significant bit is a parity 
bit giving odd parity overall). 

If the system is in operation 5 waiting for the cur¬ 
rent master to finish its transactions, and one of the 
modules needs to send an emergency message, it 

causes preemption to take place as described above. 
As a result, the system reaches operation 1 with the 
current master still in control. The module sending 
the message then immediately starts a new procedure 
in which it enters arbitration using the appropriate 
emergency-message number instead of its normal 
arbitration number. Provided no other module is 
sending a message of higher urgency, the number ap¬ 
pearing on the AB lines during the following opera¬ 
tion 5 will be the number representing the message. 
All modules taking part are required to act on it. The 
module sending the message then causes preemption 
to take place a second time, returning the system to 
operation 1 with the current master still in control. 

Correction to the expression for ta 

The length of time that the arbitration circuits take 
to settle depends on two types of delays. One is the 
propagation delay along the bus; a second type con¬ 
cerns delays through the logic circuits, bus-line trans¬ 
ceivers, and antiglitch integrators in the competing 
modules and current master. An expression for the 
settling time under worst-case conditions t& was 
derived in the 1984 article. For the general case of n 
arbitration lines, it is: 

ta<= Atn+ M ax (ts + td) 

n-2 

E M« te,k 
k=0 

+ Max tf 
C J 

0) 

where tp = maximum end-to-end propagation delay 
along the bus; 

ts = delay introduced by the integrator following 
the AR bus-line receiver; 

td = delay between the release of AR at a module’s 
terminal and the most significant digit of its arbitra¬ 
tion number being applied to AB6, less the delay intro¬ 
duced by the AR integrator; 

te k = delay between an externally produced 
change on a module’s AB(k+ 1) bus-line terminal and 
the resulting change on its AB(£) terminal, for exam¬ 
ple, in Figure 1 the sum of the delays through 
elements A, B, C, D, and E; 

tf = delay between an externally produced change 
on a module’s ABO terminal and the resulting change 
in its win/lose signal y in Figure 1, that is, the sum of 
the delays through elements F, G, and H; and 

Max/c stands for the maximum value over the 
competitors and current master. 

In fact Equation 1 cannot be used directly as a 
basis for modules to time the arbitration process 
(operations 2 through 4) because no module has in¬ 
formation on the circuit delays in the others. Instead 
all the competitors and the current master introduce a 
delay ta that depends only on its own circuit delays 
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and on values that are specified for the whole system. 
(This interval was previously designated t2 because 
the dela>\was introduced during operation 2. It now 
extends through operations 2, 3, and 4, and so the 
old designation is no longer appropriate.) ta thus 
varies from module to module. The expression for it 
has to be such that the highest value among the com¬ 
petitors and current master is never less than tas as 
given by Equation 1. This guarantees that operation 5 
cannot start until the settling process is complete. 

ta can be considered as the sum of three compo¬ 
nents, taU ta2, and tai. tai depends on the bus- 
propagation delay, ta2 on logic-circuit and bus-line 
transceiver delays, and taJ on the integrator delay. In 
1984 it was proved that suitable expressions for tal 
and ta2 are: 

ta2 = (n + UMax ytd,tek(0<k<n-2), tf^ (3) 

where Max stands for the largest component among 
td, all the tek and {/-within the module in question. 

However, the 1984 version needs to be corrected 
concerning ta3. It gave ta3 the value tsmax, that is, the 
maximum delay that the integrator/threshold circuit 
in any module is allowed to introduce. In fact this is 
longer than necessary; the original reason for the 
term tsmax and the correct term follows. 

Original reasoning. Under the conditions present in 
Futurebus, the maximum duration of a glitch or 
glitches that a module can experience on any bus line 
preceding its genuine release is 2tp. A simple case in 

which a glitch of this duration occurs is when there 
are two modules at opposite ends of the bus, both 
holding a line asserted, and one releases it; the 
module that released it will experience a 2tp glitch. 
The integrator/threshold-circuit combination in¬ 
cluded in every AP, AQ, and AR bus-line receiver 
rejects all pulses up to and including this value. 

We are concerned with the delay t' that the in¬ 
tegrator can introduce between the genuine release of 
a line and the module perceiving that release, that is, 
the interval until its threshold circuit switches. 

Suppose that a glitch has brought the integrator 
output in a module to just below the threshold level, 
and that shortly afterwards, before the integrator has 
had time to reset appreciably, a genuine release of the 
bus line takes place. Then t' in that module will be 
negligibly small, whereas in another module not ex¬ 
periencing any glitch, t' may be as high as tsmax. 

The features of the worst case conditions relevant 
to the present argument are shown in Figure 4 (de¬ 
rived from the 1984 Figure 2 on p. 33s). The master is 
situated at one end of the bus, and PM4 at the op¬ 
posite end is one of the potential masters about to 
take part in arbitration. (The “4” in its designation is 
used simply to maintain consistency with the 1984 
version.) 

In the 1984 reasoning, PM4, the ultimate winner of 
the arbitration, was assumed to be the last module to 
complete operation 1, and so line AR at the master 
would not be released until tp later. It was argued that 
in PM4 t' could be zero, while in the master it could 
be tsmax. And so, to allow for the latter’s late start of 
arbitration, PM4 and therefore modules in general 
would have to make ta3 equal to ts max. 

In fact this argument is false. If PM4 is the last 

Figure 4. Waveforms and lattice diagram showing conditions wrongly assumed in the earlier calculation of ta. 
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Master finishes Master starts 
operation 1 operation 2 

Figure 5. Waveforms and lattice diagram showing corrected conditions for worst effect of integrator delay. 

module to finish operation 1, it cannot have ex¬ 
perienced any glitches, and so its value of t' must be 
at least ts min. 

Conditions for the longest arbitration settling time. 
The arbitration settling time experienced by PM4 will 
be longest when PM4 starts the arbitration operation 
as early as possible and the master as late as possible. 
Figure 5 shows the circumstances under which this 
occurs; it deliberately ignores bus-line receiver delays 
because these have already been accounted for as part 
of ta2. 

The integrator delays in PM4 and the master are 
respectively ts min and ts max. The last module to finish 
operation 1 is the master, and it does so exactly tp 
later than PM4. Figure 5 shows that PM4 starts 
operation 2 at a time tsmin after it completes opera¬ 
tion 1, whereas the corresponding figure for the 
master is ts max. The argument given earlier showed 
that if PM4 had not experienced this ts min delay, the 
appropriate value of tai would have been tsmax. But 
since PM4 is itself delayed by tsmin, the correct value 
is: 

- tsmax~tsmin (4) 

Thus, adding Equations 2, 3, and 4, the correct 
expression for ta becomes: 

= max~~ *s min 

+ (n + l)Max \td,tek(0 < k<n-2),tf~\ <5) 

Synchronizing a new module 
A Futurebus system has to accept modules being 

plugged in while the system is “live.” To avoid dis¬ 
ruption of the bus signals, the module being plugged 
in, or the newcomer as it is called, must have all its 
bus-line variables released. Before it can start work¬ 
ing normally, the newcomer has to synchronize ap, 
aq, and ar with the modules that are already work¬ 
ing. The 1984 version (p. 40) showed how this could 
be done, but the method was not fully worked out; it 
contained several technology dependencies, only one 
of which was stated explicitly. 

Since the 1984 version and Draft 6.2 of the 
Specification were written, a better scheme has been 
developed in which the technology dependence is kept 
to a minimum and is better understood. In fact if two 
spare bus lines were available, the technology 
dependence could be avoided altogether. One of the 
lines would serve as a request for synchronization 
line, which the newcomer would assert after being 
plugged in. The second line, a synchronize line, 
would be asserted by the current master when it was 
safe for the newcomer to do so. This would occur 
during operation 6 of a control acquisition cycle in 
which the master was relinquishing control of the 
bus. By asserting this line the master would in effect 
be telling the newcomer: “The bus is now idle, and I 
am holding up the acquisition procedure (by not 
releasing aq) until you have asserted ar and ai.” (ai is 
the inverse address acknowledge signal used in the 
data-transfer portion of the bus.10) When the new¬ 
comer had done so, it would indicate the fact by 
releasing the request for synchronization line, and the 
master would respond by releasing the synchronize 
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From AQ 
bus-line 
receiver 

(a) 

To remaining 
logic 

(b) 

Delay caused 
-►I by integrator 

resetting 

Figure 6. Method of bypassing integrator resetting delay: circuit (a) and waveforms assuming active-high logic (b). 

line, after which it would complete operation 6. 

Procedure. It would be very attractive to incor¬ 
porate this scheme into a future version of the speci¬ 
fication, but for the time being it is ruled out by a 
shortage of bus lines. In its place we have used the 
following procedure, which unfortunately is more 
complicated and has a small technology dependence. 

1) After being plugged in, the newcomer detects the 
state (AP, AQ, AR) = (0, 0, 1), which indicates 
either the operation-1-wait state or the operation 3/4 
boundary. 

2) On the next occasion that it detects AQ asserted, 
indicating the start of operation 2 or 5, the newcomer 
asserts its own aq. It needs to have done this within a 
prescribed time, discussed later, to prevent the rest of 
the system from proceeding beyond the end of the 
following operation 3 or 6 as the case may be. 

3) After asserting aq, the newcomer waits until it 
detects the release of AP, which indicates that opera¬ 
tion 3/6 has started; it then asserts ar and tests AC. 
If AC = 0, the operation will be either operation 3 
of a fairness-release cycle or an operation 6 in which 
control of the bus is successfully handed over to a 
new master. In both cases the next operation is cer¬ 
tain to be operation 1. 

Therefore if the newcomer finds AC = 0, it joins 
in the normal control acquisition procedure from the 
immediately following operation. If on the other 
hand it finds AC = 1, the following operation could 
be operation 4 or 1. In this case the newcomer oper¬ 
ates the ap, aq, ar protocol but without carrying out 
any of the normal control acquisition operations. Its 
only action is to test AC every time (AP, AQ, AR) = 

(0, 1, 1), that is, in every operation 3 and 6, until it 
finds AC = 0. When AC = 0, the newcomer joins in 
the normal control acquisition procedure from the 
operation 1 immediately following. 

At this point the newcomer is not yet ready to take 
part in data-transfer activity because its ai is still at 0. 
It asserts ai during the next operation 6 in which 
mastership is being successfully transferred, that is, 
an operation 6 in which AC = 0, because as explained 
above, at that time the data-transfer lines are sure to 
be idle. 

Timing constraints. A study of worst case condi¬ 
tions shows that the maximum time that can be 
allowed between line AQ at the newcomer switching 
to 1 and the newcomer’s aq being fully switched to 1, 
that is, including the delays through the newcomer’s 
receiver, some logic, and its transmitter, is: 

(minimum duration of operation 2 
or operation 5) + 2tp 

Minimum duration here means the minimum interval 
between a module detecting bus line AQ asserted and 
its releasing ap. 

With the bus transceivers presently available, for 
example, National Semiconductor’s DS3896 and 
DS3897, the sum of the delays through the receiver 
and transmitter is greater than 2tp, which requires the 
minimum duration of operations 2 and 5 to be 
greater than zero. The specified value is likely to be 
about 30 ns, which will allow a maximum total delay 
through the newcomer’s AQ receiver, transmitter, and 
the intervening logic of 55 ns. There is no need to in¬ 
clude the integrator resetting time in this figure if one 
uses the circuit shown in Figure 6. 
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This article draws attention to those cir¬ 
cumstances wherein the performance of the 
earlier control acquisition scheme for the 

IEEE 896 Futurebus could be suboptimum. A modi¬ 
fied scheme overcomes the drawback by including the 
facility for preemption. The advantages that the new 
plan gives are: 

1) a guarantee that, at the end of a module’s bus 
tenure, control of the bus passes to the highest pri¬ 
ority module needing it at the time; and 

2) emergency-message broadcasting, independently 
of the normal data-transfer facilities. 

A small downward correction has been made in the 
length of the time interval that modules must allow 
for the arbitration circuits to settle. Lastly, an 
improved procedure has been described whereby 
modules newly plugged into a live system synchronize 
their operation with the modules already working, ste 
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Estimating the performance of a microprocessor in its design and early 
production phases can be a relatively easy process as well as a useful 
one. A manufacturer’s documentation, often available to the public 

before a microcomputer itself is introduced, provides data that can be used in 
evaluating and comparing the CPU’s raw speed. 

Here we present a synthetic instruction mix developed for evaluating the per¬ 
formance of microprocessors in scientific, commercial, systems, and general 
applications. The synthetic instruction mix consists of a set of Move, Add, and 
Multiply pseudoinstructions based on studies of dynamic statement executions 
of high-level languages, or HLL. We have translated the pseudoinstructions 
used in the synthetic instruction mix for several microprocessors to determine 
the performance in executing the pseudoinstructions for the different types of 
applications. 

Several techniques are known and used for evaluating the performance of 
computers. Lucas has surveyed the popular evaluation techniques: cycle and 
add times, instruction mixes, kernel programs, analytic models, synthetic pro¬ 
grams, simulation, and performance monitoring.1 

The major instruction mix formulations were developed by Arbuckle, 
Knight, and Gibson.2-4 These early instruction mixes were developed before 
statistical studies of computer instructions and high-level languages were made 
by Knuth and others.5 

Increased interest in determining a mix of instructions that matches HLL use 
occurred with the arrival of RISC architectures.6’7 We do not want to com- 

Need to rate the 
performance of 
that new micro¬ 
processor you’re 
interested in? 
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Evaluating Microprocessors 

ment on the RISC-versus-CISC controversy.8 But, 
our synthetic instruction mix may be able to give 
measures for comparing the performance of such 
processors. The examples we give here apply to 
popular microcomputers. 

Any comparative evaluation of different computers 
can only be definitive in terms of specific programs 
run under specific conditions. Bell et al. produced a 
chart comparing several benchmark programs run on 
a VAX 11/780 and a DECsystem 2060.9 The chart 
showed the VAX to be three times slower on one 
benchmark and 50 percent faster on another. The 
dependence on unsuitable choices of benchmarks 
could lead to a factor-of-six difference in expected 
performance levels. Even within the same computer 
architecture, different benchmarks can give signifi¬ 
cantly different results. McCallum’s simple test per¬ 
formed on the VAX 8600 and VAX 785 showed a 35- 
percent difference between performance ratings ob¬ 
tained from the Whetstone and the Sieve benchmarks.10 

Instruction mixes and benchmarks 
The major difference between instruction mixes 

and benchmark programs for evaluating performance 
is that the instruction mix looks only at the CPU pro¬ 
cessor. The benchmark program tests the combina¬ 
tion of the language processor and the CPU pro¬ 
cessor. The language processor causes a larger varia¬ 
tion in performance in more cases (see Gilbreath and 
Gilbreath11) than does the CPU performance. 

An instruction mix evaluation avoids the language 
processor problem because its instructions are com¬ 
piled by hand. A synthetic mix uses pseudoinstruc¬ 
tions that can be translated to specific machine lan¬ 
guage equivalents for different processors. 

No method is truly accurate in determining pro¬ 
cessor performance. However, it is always useful to 
know the approximate performance of a processor 
for discussion and comparison purposes. This pro¬ 
cessor performance measure P is normally derived by 
running a standard benchmark such as the Whet¬ 
stone, 12 the Dhrystone,13 or a more-specialized 
benchmark suite such as the Unix benchmarks.14 
Despite attempts to claim these benchmark perfor¬ 
mances as accurate performance ratings, they can 
provide only a guideline, due to the inclusion of the 
effect of the language processor. 

The Whetstone benchmark derived by Curnow and 
Wichmann is based on static and dynamic counts of 
instructions used in the Whetstone Algol system 
described by Randel and Russell.12,15,16 The statistics 
were collected from a total of 949 Algol programs, 
which were run on the Whetstone system and cate¬ 
gorized by counting the number of the Whetstone 
Algol interpretation instructions. The benchmark was 
derived from matching a synthetic program to this in¬ 

struction mix. The Whetstone benchmark, 'as in any 
high-level benchmark program, is designed to mea¬ 
sure the combined hardware and language processor 
performance. One significant result of Curnow and 
Wichmann’s work was the measurement of a 7:1 
ratio between versions of language processors run¬ 
ning on one specific computer (an IBM 360/65). 
Although the combined language/CPU performance 
is useful in most evaluation exercises, sometimes only 
the basic CPU speed is desired—such as when design¬ 
ing a new processor. 

The Whetstone benchmark contains three known 
defects. It lacks a standard mix of operator and 
operand precisions (word size); its internal loops can 
be optimized to nothing with good global optimiza¬ 
tion in the language processor; and its predominance 
of floating-point operations is too strong. 

The difficulty with any benchmark program is that 
it requires having the processor available to you in 
the configuration you wish to compare. One often 
wants to determine the performance of the processor 
before the processor is actually available. Fortunate¬ 
ly, microcomputers in particular often have documen¬ 
tation available before they become accessible to the 
public. With this data we can create a synthetic in¬ 
struction mix for determining the performance of 
microcomputers. 

The process of creating a synthetic instruction mix 
is similar to the problem of creating a synthetic 
benchmark program. One must determine the func¬ 
tion for which the processor will be used to determine 
what type of instructions will be necessary. Then the 
frequency of the actual machine instructions must be 
estimated. The time for executing those instructions 
in the processor must be determined, given some con¬ 
straints about the processor’s environment. Finally, 
this process must be repeated for several processors 
so that the relative performance P is meaningful to 
people studying the evaluation. 

The first stage in developing a synthetic instruction 
mix is the same as in the case of the synthetic bench¬ 
mark—to gather statistics on the use of processors. 
Weicker surveyed data available in the literature for 
determining an HLL benchmark, Dhrystone (given in 
Ada and translatable into C and Pascal).13 The 
Dhrystone, designed for systems programming, does 
not include floating-point operations, while the 
Whetstone is oriented heavily toward such opera¬ 
tions. We have surveyed the statistical data on high- 
level languages for scientific, commercial, and sys¬ 
tems applications. 

The second stage in developing the synthetic in¬ 
struction mix is to translate the HLL instructions into 
corresponding machine language instructions. Com¬ 
pilers translate in the case of synthetic benchmarks. 
We chose to use a pseudoinstruction form for this 
“compilation.” We derived a set of five pseudo¬ 
instructions that must be determined for each pro- 

64 IEEE MICRO 



cessor. The five instructions have a variety of data- 
word lengths to give a total of 12 instructions to 
estimate for each processor. (Even a small number of 
instructions can represent the majority of instructions 
used in a program.17 We have estimated the weights 
of these pseudoinstructions for systems program¬ 
ming, commercial programming, scientific program¬ 
ming, and general programming environments. We 
feel that the general programming environment is the 
best indicator of performance, in that it will not vary 
too greatly between one application and another. 

The last stage in the benchmark process is to derive 
the estimated execution time of this mix on specific 
processors. This stage requires that the pseudo¬ 
instructions be translated into actual machine code 
instructions. We have assumed these pseudo¬ 
instructions would have memory-to-memory opera¬ 
tions, which means that each pseudoinstruction will 
likely translate into several microprocessor instruc¬ 
tions. Since this is a hand-translation process, we 
have tried to keep it simple. If the translation were 
too difficult, few people would be interested in deter¬ 
mining performance. For this reason we have kept 
the number of pseudoinstructions small. The timings 
of each of these actual machine instructions have to 
be determined, or estimated where appropriate. In 
newer microprocessors (such as the Motorola 68020 
with instruction caches and pipelined architectures), 
we must estimate some effective average execution 
times. When the total times for the execution of the 
pseudoinstructions have been determined, the times 
can be put into the instruction mix formula. This 
gives a performance rating in pMIPS (millions of 
pseudoinstructions executed per second). This pMIPS 
rating is about half of the MIPS ratings generally at¬ 
tributed to large computers.18-19 

Determining the high-level 
statement mix 

Static and dynamic analyses of programs have 
been performed for many different languages and 
types of applications. Knuth performed the first 
major study on language analysis with Fortran.5 
Similar types of studies have been performed for 
Algol,15’20 XPL,21 PL/1,22 SAL,23 Cobol,24’25 
Pascal,26-29 APL,30 HLL Symbol computer,31 and 
Ada.32-33 Additional work on Fortran has been done 
by Lurie and Vandoni,34 Robinson and Torsun,35 
and Partridge and James.36 Weicker presents a fairly 
comprehensive summary of HLL instruction statistics 
on the Dhrystone benchmark.13 

Some studies of actual machine instructions have 
been made for a variety of processors. Some of the 
processors studied were the Maniac and the 
CDC3600,17 the IBM S/360,21 the MOS6502,37 the 
VAX,38 and the Motorola MC68000.39 Fairclough 
made static instruction counts on four microproces¬ 
sors: the TMS9900, the MOS6502, the MC6800, and 
the MC68000.7 These studies mainly look at the in¬ 
dividual instruction frequencies rather than at the 
purpose of the instructions. It is therefore difficult to 
compare instruction frequencies across the proces¬ 
sors. Fairclough grouped the instructions into cate¬ 
gories that do not correspond directly (but which are 
easily adjustable) to the HLL statements. 

Table 1 summarizes the statement and instruction 
frequencies found in several empirical studies men¬ 
tioned above. The majority of these measures are 
from static frequency counts of high-level languages. 
However, some machine-level instructions have been 
counted, and some dynamic instruction counts have 
been made. These values can be used to calculate 

Table 1. 
Percentage of statement types in high-level languages. 

Form: Dynamic Dynamic Dynamic Static Static Static Static 
Language: Fortran5 Cobol25 Assembly39 Fortran5 Fortran5 Fortran35 PL/121 

Statement 
Assign 
Add 

67 
20 16 

51 41 38 41 

Move 27 33 
If 11 33 11 10 15 9 18 
Goto 9 11 16 9 13 9 12 
Do 3 8 9 4 6 7 
Cal! 
Perform 

3 
6 

6 5 8 3 2 

Total % 93 97 90 84 81 65 80 

No. lines 15,000 21,745 2,000 15,000 250,000 29,971 145,994 
est* est est 
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Table 1. 
Percentage of statement types in high-level languages, (cont’d.) 

Form: 
Language: 

Static 
Cobol24 

Static 
Cobol25 

Static 
Assembly7 

Static 
Pascal29 

Static 
Pascal40 

Static 
Pascal27 

Static 
Pascal28 

Statement 
Assign 42 49 34 44 

Add 7 8 14 

Move 38 34 45 
If 15 18 10 14 9 18 14.8 

Goto 14 17 14 0.5 0.3 0.3 0.3 

Do 6 8.1 11 7 8.2 

Call 9 34.3 9 40 17.5 

Perform 11 13 

Total % 85 90 98 98.9 78.3 99.3 84.8 

No. lines 226,466 21,745 50,000 11,393 2,000 24,512 59,018 
est est 

♦Where the number of lines of code was unknown, we have estimated. 

several HLL statement mixes. We have used the five 
types of high-level statements in our mix: Assign¬ 
ment, If, Goto, Do, and Call. See Table 2 for a list 
of the calculated statement mixes. We based our 
choice of limiting the statement types on Knuth’s 
Fortran data in which 75 percent were all Fortran 
statements and another 20 percent were nonexe¬ 
cutable statements.5 We omitted only input/output 
statements from the major instructions. I/O instruc¬ 
tions were thought to be too variable among 
machines to determine actual machine translations. 
This choice of statement types led to a problem in 
some languages such as Cobol and assembly in which 
the Move and Compute categories of instructions 
would correspond to assignment and similar 
equivalence problems. We tried to translate these 
reasonably. 

Table 2. 
Normalized statement frequencies 
(in percentages) for a general mix. 

Statement Static Dynamic 

Assignment 52 58 
If 18 24 
Goto 13 11 
Call 10 4 
Do 7 3 

Total % 100 100 

We calculated the percentages of dynamic state¬ 
ment frequency separately from the static statement 
percentages. The quoted statement types and fre¬ 
quencies in Table 1 have been adjusted to fit into our 
categories. The total statement frequencies do not 
equal 100 percent for different reasons: nonexe¬ 
cutable statements and the limited statement set we 
have chosen. As a result we adjusted the statement 
frequencies to give totals of 100 percent. 

We then weighted the normalized statement fre¬ 
quencies by the sample size of the studies and made 
total counts of the weighted instructions. Finally, we 
adjusted the Add, Move, and Perform statements to 
fit into the Assign, Do, and Call categories. 

Table 2 summarizes the percentage of statement 
types found in static and dynamic execution counts. 
The static statistics are calculated from a sample size 

of about 850,000 lines of code. The dynamic results 
are generated by about 40,000 lines of code. 

Determining operations in language 
statements 

We have estimated the major statement frequencies 
for Assignment, If, Goto, Do, and Call statements. 
These statements must now be studied to determine 
the pseudoinstructions that they each generate. The 
generated instructions depend on the type of opera¬ 
tors and operands being used in the statements. 
Weicker’s survey includes operand types for some 
high-level languages. It is difficult to translate the 
HLL operands directly to low-level operand types. 
However, we have tried to estimate this split from the 
gathered statistics. 
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We estimated how many 64-bit, 32-bit, 16-bit, and 
8-bit operands exist so we could determine typical 
Move operations.13 (We included 104-bit, or 13-byte, 
operands due to the average Cobol Move operand 
found by Torsun and Al-Jarrah.25) The split of 
operands among integer, real and double-precision, 
and complex values indicates the complexity of the 
floating-point operations that might have to be per¬ 
formed. The major study of operand types is an un¬ 
published 1980 study by Patterson and quoted by 
Weicker.13 

Lurie and Vandoni studied scientific Fortran iden¬ 
tifier names based on 92,463 lines of code in CERN’s 
program library.34 In Fortran, the implicit name con¬ 
vention for integers is almost always followed by pro¬ 
grammers. Lurie and Vandoni found that approxi¬ 
mately 40 percent of the occurring identifiers start 
with the letters I to N. These identifiers did not in¬ 
clude the Fortran keywords and function names, 
which they counted separately. The relative occur¬ 
rences of the double-precision function names and 
single-precision function names of sin, abs, and cos 
(6.7 percent, 4.5 percent, and 7.2 percent) give an 
estimate of double precision to real usage. The exp 
and abs functions give a similar value for the com¬ 
plex to real usage (5.2 percent and 7.1 percent). This 
results in the split of real (53 percent), integer (40 per¬ 
cent), double (3.5 percent), and complex (3.5 percent) 
for heavy scientific computing from a static Fortran 
program analysis. We have included the complex type 
into the double-precision category to simplify the 
analysis. 

The percentages of operand types used in systems 
programs are not so easy to estimate. The reason for 
this difficulty is the heavy use of string or character 
variables. Even assembly language in CISC machines 
such as the VAX can give problems in evaluation due 
to the multibyte Move operations. It appears we have 
no choice other than to crudely estimate a split 
among the operand types, taking into account Weick- 
er’s quotations and looking at VAX opcode distribu¬ 
tions.38 Table 3 lists the distribution of elementary 
operand types we have used. 

Having determined estimates for the mix of high- 
level statements and the percentages of operands used 
in the statements, we must determine the mix of 
operators. We used only the Assignment statement or 
its equivalent to determine the operator frequencies. 

Determining operator frequencies 
The translation of the Assignment statement to 

pseudoinstructions requires the knowledge of the fre¬ 
quency of Assignment statements in programs (given 
in Table 2); the relative distribution of the types of 
operands (given in Table 3); the relative distribution 
of the types of operators; and the relative distribution 
of the forms in which the Assignment statement ap¬ 
pears. We determine the distributions of the types of 
operators and the forms of the Assignment statement 
in this section. These distributions differ among pro¬ 
grams written for scientific, commercial, and systems 
programming applications, so we consider each 
separately. 

Table 3. 
Normalized distribution of operand types by application. 

Bits Scientific1 Commercial2 Systems3 General 

Quadword 
Double-precision 64 7 0 0 2 
Group (str,rec) 104 59 4 21 

Long word 
Real 32 53 0 0 18 
Integer/address/ 

pointer 32 9 5 5 
Word 

Integer 16 40 9 54 34 
Byte made up of: 0 23 37 20 

Character 8 (22) (20) 
Enumeration 8 (1) (12) 
Boolean 8 (5) 

Total % 100 100 100 100 

' Derived from variable and function name distributions (see text). 1 Modified from the Dhrystone benchmark. 
2 Estimated from Torsun and Al-Jarrah.25 4 An average of the other three distributions. 
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Table 4. 
Static frequencies (in percentages) of operators in Assignment statements or equivalents. 

(Derived from Knuth;s functions not included.) 

Scientific Commercial Systems General 

Relative Relative Relative Relative 

Operator Number frequency frequency frequency frequency 

+ 10,593 23 19 35 26 

+ 1 7,200 15 74 24 38 
__ 10,298 22 3 26 17 

* 12,348 27 3 11 14 

/ 4,739 10 1 4 5 

* * 681 2 1 

* *2 427 1 

Total % 100 100 100 100 

Scientific programs. Several studies have counted 
operator frequencies in statements (see Weicker for a 
summary13). Knuth has made static counts of the 
operators in Assignment statements in scientific pro¬ 
grams.5 Knuth found that 68 percent of all assign¬ 
ments were of the form A = B, and that 12.5 percent 
were of the type A = A op B. Using his complexity 
values for the Assignment statements, we can esti¬ 
mate that 11 percent were of the form A = B op C, 
in addition to the previous 12.5 percent. Knuth also 
found that 40 percent of additions were simply in¬ 
cremented by one. Interpretation of his table shows 
that 3.9 percent of statements fall into the form A = 
B op C op D. Only 4.6 percent of statements have 
more operations, and we assumed that there were 
four operands to simplify further estimations. The 
relative percentages of operators that Knuth found 
are given in Table 4. 

Commercial programs. For comparison of state¬ 
ment types, we combined the Cobol Move and Add 
statements and said they were equivalent to an 
Assignment statement. Here we have to consider the 
original statement types. Torsun and Al-Jarrah did a 
thorough dynamic analysis of Cobol programs.25 
They found that in the Move statement (26.9 per¬ 
cent), the average number of operands was two, or 
basically, one string is moved to another location, 
where the string is about 13 bytes long. A small 
percentage of these moves implied a translation of 
types. In the Add statement (19.8 percent), about 80 
percent of the executed instructions were similar to 
an increment (add a constant to a computational 
variable). We attribute the remaining 20 percent of 
Add statements to the form C = A + B. We con¬ 
sider the Subtract statement (0.7 percent) and the 
Multiply statement (0.6 percent) to be two-operand 

statements as well. Compute (0.4 percent) will be 
considered to be a three-operand statement. 

Systems. We have taken the arithmetic operator 
frequencies from the Dhrystone benchmark (note 
that Table XI of Weicker’s paper contains some 
typographical errors). We have assumed that 40 per¬ 
cent of the additions are increments to correspond 
with the Fortran findings. Table 4 lists the operator 
frequencies. The distribution of forms of the Assign¬ 
ment statement is also taken from the Dhrystone 
benchmark (adapted from Weicker’s Table VIII). 
Table 5 summarizes the forms of the Assignment 
statements that we have used in the synthetic instruc¬ 
tion mix. 

Pseudoinstructions 

We have determined the operations that are to be 
performed and the operand types on which the oper¬ 
ations are being performed. Now, we can determine 
what pseudo-operations should be used in the syn¬ 
thetic instruction mix. Table 6 summarizes the 
pseudoinstructions. These instructions are all 
memory-to-memory instructions, since the majority 
of HLL operations work directly with memory. 

In choosing these pseudoinstructions, we took into 
account many reasons. Consider each of the pseudo¬ 
instructions separately. 

• The Move8 instruction implements the character, 
enumeration, and Boolean operand moves. It is also 
used for smaller portions of the string movement. In 
8-bit processors, the 8-bit Move gives a significant 
advantage to comparisons using 16-bit Moves. 

• Move 16 is the major Move instruction for integer 
numbers. Most integers can be represented with a 
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Table 5. 
Forms of the Assignment statement or equivalent. Frequencies are stated in percentages. 

Form Scientific1 Commercial2 Systems3 General4 

A = B 68 55 66 64 
A = A op B 12.5 33 6 17 
A = B op C 11 11 24 15 
A = B op C op D 3.9 1 2 2 
A = B op C op D op E 4.6 0 2 2 

Total % 100 100 100 100 

' Based mainly on Knuth’s Fortran data.5 
2 Based on data from Torsun and Al-Jarrah.25 
3 Based on the Dhrystone systems benchmark. 
4 The average of the other three types. The probabilities of these forms is adjusted in the overall mix by the probability of the 

Assignment statement. 

Table 6. 
Pseudoinstructions used in 

the synthetic instruction mix. 

Form 

Move8 A to B 
Move 16 A to B 
Move32 A to B 
Load32 A to Reg 
lncrl6 A + 1 to A 
Add8 A to B 
Add 16 A + B to C 
Add32 A + B to C 
Fadd32 A + B to C 
Fadd64 A + B to C 
Mull6 A * B to C 
Fmul32 A * B to C 

16-bit value. Turbo-Pascal for example, does not 
allow a 32-bit integer representation.41 Move 16 gives 
a 16-bit processor a significant advantage in com¬ 
parison with 32-bit processors. 

• The Move32 instruction moves a variety of oper¬ 
ands: long integer and standard reals, as well as ad¬ 
dresses during a Call. Long string Moves are made up 
of three of these Moves. The “integers” represented 
by the 32-bit values come from the commercial area 
where more accurate values are required for fixed 
decimal representation. Repetitions of this 32-bit 
Move make up long string Moves. (If 64-bit pro¬ 
cessors become available, a new synthetic benchmark 
should be formulated with a 64-bit Move.) 

• Load32 moves an address into a register. This in¬ 
struction simulates a Goto instruction, which involves 
loading a register. It is also used in the Call statement 
equivalent. We use a 32-bit value based on large 
memory operation or an equivalent. 

• The Incrl6 is the only one-address instruction; all 
other instructions involve two or three addresses. 
Loops are normally controlled by integer indexes. 
The arithmetically frequent increment translates into 
a much faster instruction than an Add in most cases. 
Since integers are normally 16-bit values, we did not 
choose a 32-bit increment. 

• The Add8 instruction should really be a Sub¬ 
tract, used to compare two values. But we assume 
that an Add and a Subtract instruction are roughly 
equal in timing; only Add (and not Subtract) has 
been included in the various word sizes and forms. 

• Add 16 is the major integer computational in¬ 
struction. Like all of the following instructions, it is a 
three-operand memory-to-memory operation. 

• Add32 is used mainly for commercial program¬ 
ming where larger integers keep accuracy for ac¬ 
counting purposes. This instruction is also used in 
place of the Subtract instruction for testing equality 
in If statements. Since addresses are assumed to be 
32-bit values, any address calculations, such as those 
using strings, include 32-bit operations. 

• The Fadd32 floating-point addition is used 
almost exclusively in the scientific area. However, it 
usually requires significantly different computing 
time than does 32-bit integer Adds and so must be 
used in benchmarking for scientific and general 
benchmarking. 

• The Fadd64 double-precision floating-point 
operations are not common, but they do take con¬ 
siderably more time than regular floating-point 
operations. The double-precision floating-point 
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Multiply and Divide instructions have been translated 
to Fadd64, since the evaluation times should be 
similar and the relative frequencies of the other 
double-precision operations is small. 

• In Mull6 two 16-bit numbers are multiplied to 
produce a 16-bit result. The execution time of this in¬ 
struction is likely to be similar to a 16-bit Divide, so 
16-bit divisions also are translated into the Mull6 
pseudo-operation. We mapped all operand sizes of in¬ 
teger multiplication and division to this instruction. 

• In Fmul32 two real numbers are multiplied to 
produce a resulting 32-bit number. Fmul32 has been 
used to represent real 32-bit division as well. 

Usually, the instructions do not translate according 
to a strict set of rules when considering specific mi¬ 
croprocessors. This happens because the processors 
are usually a mix of 8-, 16-, and 32-bit instructions. 

Table 7. 
Pseudoinstructions due to 

A = B or Move command. 

Bits 

Operand length 

8 16 32 64 104 

Move8 10 0 
Move 16 0 10 
Move32 0 0 1 

0 1 
0 0 
2 3 

Determining the synthetic mix of 
pseudoinstructions 

Using the statement frequencies from Table 2 and 
from Table 5, we can generate a set of the frequen¬ 
cies of the statements of different forms for the four 
application categories. The problem then is to trans¬ 
late these forms of statements into our pseudo¬ 
instructions. Each of the statement forms will 
generate a different set of pseudoinstructions, so con¬ 
sider each statement form separately. 

• The A = B statement form is simply a Move in¬ 
struction. In our pseudoinstructions, it generates one 
or more Move commands of a length depending on 
the lengths of the operand. The number of Move in¬ 
structions generated for the type of operand is given 
in Table 7. 

• A = A op B is a fairly standard two-operation 
instruction between two operands stored in memory. 
Although the two address forms of actual machine 
instructions are significantly different from the three- 
address forms, we decided to keep the instruction mix 
reasonably simple. We assumed that this two-operand 
form is equivalent to the time for executing a three- 
operand form, minus one half of the time to execute 
a Move instruction of the proper length. 

• A = B op C is the standard memory-to-memory, 
three-address instruction form. Typically in a two- 
address machine it compiles to a sequence of the 
form: 

Load B to register; 
Operate from C into register; 
Store register to memory location A. 

Table 8. 
Translations of operator/operand pairs into pseudoinstructions. 

Operand type 

Operator 
Form Byte Inti 6 Int32 Real32 Real64 Strl04 

+ Add8 Add 16 Add32 Fadd32 Fadd64 3 * Move32 
+ Move8 

+ 1 Add8 Incrl6 Add32 Fadd32 Fadd64 Add32 

— Add8 Add 16 Add32 Fadd32 Fadd64 3 * Add32 
+ Add8 

* Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32 

/ Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32 

* * 2 * Move8 5 * Fadd32 5 * Fadd32 5 * Fadd32 17* Fadd64 Add32 
+ 6*Fmul32 + 6*Fmul32 + 6 * Fmul32 — 18*Move32 
—5*Move32 —5 * Move32 —5*Move32 

* *2 Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32 
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Table 9. 
Number of pseudoinstructions generated 

by the translation of the If statement. 

Pseudo¬ 
instruction Byte Intl6 

Operand type 

Int32 Real32 Real64 Strl04 

Load32 1 1 1 1 1 1 

Move32 0 0 0 0 -0.5 -1 

Add8 1 0 0 0 0 1 

Add 16 0 1 0 0 0 0 

Add32 0 0 1 1 2 3 

The instructions that this form of statement generates 
are shown in Table 8. 

• A = B op C op D is similar to the standard 
arithmetic Assignment statement shown above. How¬ 
ever, it has an additional operation that should be 
made from memory to register. We estimated our in¬ 
structions for memory-to-memory operation. Our 
equivalent is obtained by performing two standard A 
+ B op C operations, minus one half of a Move 
operation. Even on a processor with a three-address 
architecture, this should give a fair representation of 
the instruction timing for the statement. We assume 
that the operand type is the same for all operations in 
the statement. 

• For A = B op C op D op E we use the same as¬ 
sumptions as above and assume three times the in¬ 
struction weighting from Table 8 and subtract one 
Move of the corresponding operand length. These 
multiple-operation statements occur infrequently, en¬ 
suring that few errors should be introduced by this 
approximation. 

• In the If statement we assume that a comparison 
and a choice of program flow is made. This corre¬ 
sponds roughly to a subtraction and a register (pro¬ 
gram counter) load. The comparison must be done 
for the length of the operand. However, floating¬ 
point operations are not necessary even for non¬ 
equality testing. Table 9 shows the translation of the 
If statement into pseudo-operations. 

• The Goto statement is simply a Load32 instruc¬ 
tion, since its function is to transfer data to a specific 
location in full memory. 

• We assume that the Call statement translates into 
two Load32 instructions and two Move32 instruc¬ 
tions to perform two transfers and two parameter 
stores. Although it is likely we will find a stack in¬ 
struction, this should give us a reasonable equivalent. 

Using a machine Call instruction is not likely to give 
a better result because of the variety of stack opera¬ 
tions or transfers occuring in high-level programming 
languages. 

• The Do or loop instruction increments a counter, 
comparing the counter with some control value and 
branching to some location in memory. Therefore we 
translated it as an Incrl6, a Compare in the form of 
Add 16, and a branch in the Load32 form. These 
translations are independent of operand statistics, 
since loops are most frequently integer loops. 

Generating the pseudo-operation 
mix 

Now that we have stated the basic translations, we 
must perform the calculations for each of the ap¬ 
plication areas so they can be translated into the 
pseudoinstruction mix. We do this by calculating the 
number of occurrences of each of the pseudo¬ 
instructions from the previous tables and writing 
descriptions of the instructions. Table 10 lists the for¬ 
mulae used in these calculations. 

The formulae in Table 10 are based on the prob¬ 
abilities of: the statement forms such as p(A = B) 
from Tables 2 and 5; the operand types such as 
p(byte) from Table 3; and the operator types such as 
p( -I-1) from Table 4. We developed the equations 
from the explanation in this section and Tables 7, 8, 
and 9, which explain how the statement types get 
translated to the pseudoinstructions. 

When we use the dynamic instruction frequencies 
from Table 2 in the preceding equations along with 
the probabilities in Tables 3, 4, and 5, we achieve the 
relative instruction frequencies. We normalize these 
frequencies, so that we obtain the probability distri¬ 
butions of the different instruction types (of our 
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Table 10. 
Pseudoinstruction counts based on probabilities of operators, 

operands, statement frequencies, and forms. 

MOVE8 = p(A=B)*{p(byte)+p(strl04)} 
- (p(byte)*[p(+)+p(+l)+p(-)] + p(strl04)*p(+)} 

* (p(A=AopB)*.5+p(A=BopCopD)*.5+p(A=BopCopDopE)} 
+ (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

* (2*p(byte)*p(**) + p(strl04)*p(+)} 

MOVE16 = p(A=B)*p(intl6) 
-{p(intl6)+[p(byte)+p(int32)]*[p(*)+p(/)+p(**2)]} 

*{p(A=AopB)*.5+p(A=BopCopD)*.5+p(A=BopCopDopE)} 

MOVE32 = p(A=B)*{p(int32)+p(real32)+2*p(real64)+3*p(strl04)} 
-(p(int32)+p(real32)+2*p(real64)} 

*(p(A=AopB)*.5+p(A=BopCopD)*.5+p(A=BopCopDopE)} 
+ (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

*{p(strl04)*3*p(+) 
“ P(**)*[5*[p(real32)+p(int32)+p(intl6)]+18*p(real64)]} 

- p(IF)*{p(real64)*.5 +p(strl04)} 
+ 2*p(CALL) 

LOAD32 = p(IF) + p(GOTO) + 2*p(CALL) + p(DO) 

INCR16 = p(intl6)*p(+l) 
*(p(A=AopB)+p(A=BopC)+2 *p(A=BopCopD)+3*p(A=BopCopDopE)} 
+ p (DO) 

ADD8 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

* (p(byte)*[p(+)+p(+1)+p(-)]+p(strl04)*p(-)} 
+ p(IF)*p(strl04) 

ADD16 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

*p(intl6)*{p(+)+p(”)} 
+ p(IF)*p(intl6) + p(DO) 

ADD32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)) 

* (p(int32)*[p(+)+p(+1)+p(-)] 
+p(strl04)*[p(+l)+3*p(-)+p(*)+p(/)+p(**)+p(**2)]} 

+ p(IF)*(p(int32)+p(real32)+2*p(real64)+3*p(strl04)) 

FADD32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)) 

* (p(real32)*[p(+)+p(+l)+p(-)] 
+5*p(**)*[p(real32)+p(int32)+p(intl6)]} 

FADD64 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 
* p(real64)*(p(+)+p(+l)+p(-)+p(*)+p(/)+p(**2)+17*p(**)} 

MUL16 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

* [P(*)+P(/)+P(**2)] * (p(byte)+p(intl6)+p(int32)) 

FMUL32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)} 

* (p(real32)*[p(*)+p(/)+p(**2)] 
+ 6*p(**)*[p(real32)+p(int32)+p(intl6)]} 
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pseudoinstructions) in each type of computing. These 
are given in Table 11. 

Table 11 does not show the relative frequencies of 
executing these instruction types in these applications. 
Instead, the table lists the weightings of this set of in¬ 
structions to determine the relative performance of 
the processors as a whole. The assumptions made in 
subtracting Move instructions to remove the effect of 
the storing of intermediate values in Assignment 
statement evaluation means that the distribution is 
not correct for Moves. Moves have been traded off 
for the more-powerful addressing modes of three- 
operand instructions. 

Considering this limitation of the synthetic instruc¬ 
tion mix, we can compare our mix with the other in¬ 
struction mixes that have been used in performance 
evaluation. The other values in Table 12 have been 
taken from Bell et al.9 

It is difficult to compare the instruction mixes 
because (1) many instruction types may be equivalent 
for execution, and (2) seemingly similar instruction 
types may require widely varying execution times. 

Table 11. 
Distribution of pseudo-operations used in mixes. 

Pseudo¬ 
operations Scientific Commercial Systems General 

Move8 0 13.7 11.6 9.6 
Move 16 11.5 1.6 15.4 8.1 
Move32 21.7 26.5 9.9 21.8 
Load32 28.1 19.4 30.9 24.4 
Incrl6 2.8 2.0 4.1 3.3 
Add8 0 8.7 5.8 5.2 
Add 16 10.6 2.4 15.8 7.8 
Add32 9.8 25.5 4.2 14.9 
Fadd32 6.6 0 0 2.3 
Fadd64 1.5 0 0 0.3 
Muil6 2.4 0.2 2.3 1.4 
Fmul32 5.0 0 0 0.9 

Total % 100 100 100 100 

Table 12. 
Instruction mix weights. 

Knight3 This work 

Instruction Arbuckle2 Gibson4 Scientific Commercial General 

Fixed +/— 6 10(25) 25(45) 31 

Multiply 3 6 1 1.4 

Divide 
Floating 

1 2 

2.6 + /— 
Floating 

9.5 10 

0.9 multiply 5.6 
Floating 

divide 
Load/store/ 

2.0 

64 move 28.5 25 
Indexing 
Conditional 

22.5 

branch 13.2 20 
Compare 
Branch on 

24 

character 10 
Edit 4 
I/O initiate 
Other 18.7 

7 
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Table 13. 
Clock cycles required to execute the pseudoinstructions 

Pseudo¬ 
instruction 18085 1286/287* MC68000 MC68020 MV/8000 

Move8 
Move 16 
Move32 
Load32 
Incrl6 
Add8 
Add 16 
Add32 
Fadd32 
Fadd64 
Mu!16 
Fmul32 

26 
32 
64 
36 
38 
43 
62 

139 
2000 
4000 
1400 
2500 

16 
16 
32 
10 
14 
30 
30 
60 

650 
780 
64 

688 

20 
20 
28 
16 
16 
36 
36 
50 

232 
464 
102 
894 

9.5 
9.5 
9.5 
6 
9 

17 
17 
17 

150 
300 
42 

300 

1.1 
0.88 
1.32 
0.66 
1.32 
1.76 
1.54 
6.82 
2.64 

43.34 
3.41 
3.96 

*The 1286/287 time is quoted in crystal clocks instead of system clocks. These times must be multiplied by 1.05 to get average times 
due to instruction fetches. 

Table 14. 
The pMIPS ratings determined for various microprocessors. 

Processor 18085 1286/287 MC68000 MC68020 MV/8000 
Speed (MHz) 5 16* 8 16.67 1 
Pseudo¬ 
instruction 

Scientific 0.01 0.14 0.09 0.43 0.40 
Commercial 0.07 0.48 0.26 1.44 0.38 
Systems 0.06 0.70 0.31 1.50 0.71 
General 0.03 0.31 0.19 0.93 0.45 

♦Xtal frequency ratings are given for processors using memory with no wait states. 

Translating to specific 
microprocessor instructions 

Now that we have determined the relative instruc¬ 
tion mix, we must look at the time it takes to execute 
these instructions on various microprocessors. Here, 
we look specifically at the Intel 8085,42 the Intel 
80286/80287,43 the Motorola 68000,44 and the Moto¬ 
rola 68020.45 In addition, we have included the Data 
General MV/8000 as a comparison with a standard 
super-minicomputer.46 The pseudoinstruction trans¬ 
lations to the actual machine code appear in the ac¬ 
companying box. Table 13 lists the number of clock 
cycles required to execute each pseudoinstruction on 
each of the processors. The MV/8000 data appears as 

actual average execution times in microseconds, since 
its clock is not adjustable by users. 

When we include these execution time values in the 
instruction mix weightings, we obtain the perfor¬ 
mance values given in Table 14. The performance 
values are quoted in pMIPS, which are the millions 
of the pseudoinstructions executed per second. These 
pseudoinstructions are carried out from memory to 
memory, actions which require more time to execute 
than the simpler register-to-register operations. High- 
level languages do most of their work from memory 
to memory, as shown previously. These pMIPS 
ratings reflect performances of more than the instruc¬ 
tions executed in most computers. They can be ex¬ 
pected to be slower to execute than register-to-regis- 
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Translation of pseudoinstructions into specific 
assembly language instructions for selected processors 

The time to execute each of the 12 pseudo¬ 

instructions must be determined for each micro¬ 

processor of interest. Each pseudoinstruction should 

be translated into the fastest set of assembly lan¬ 

guage instructions for the specific microprocessor. 

The clock cycle time required to execute each of 

the assembly language instructions is usually found 

in the manufacturer’s documentation. Some estima¬ 

tion may be necessary for difficult instructions or to 

adjust for the effects of cache memory and pipe¬ 

lined instruction execution. 

Here we give the assembly language instructions 

and the execution time for the instructions in system 

clock cycles (based on no wait states for memory 

accesses) for several microprocessors: the Intel 

8085, the Intel 80286/80287, and the Motorola 

68000 and 68020. The MV/8000 super-mini¬ 

computer execution times are also given for 

comparison. The timing results for the pseudo¬ 

instructions are summarized in Table 13. 

The Intel 8085, an updated version of the 8080 

microprocessor, is also similar to the Z80 micro¬ 

processor. All three have 8-bit processors with some 

limited 16-bit processing capabilities. The standard 

fast version of the 8085 operates at 5 MHz. A ver¬ 

sion of the Z80 processor operates at 10 MHz. 

Please refer to Table A. 

In the calculations for the Intel 80286/80287 

shown in Table B, we use the basic system clock, 

since it is divided by two for the CPU and by three 

for the floating-point processor. This is the same as 

calling the IBM PC AT a 12-MHz processor. With 

this system clock, there are four clocks to the bus 

(memory) cycle. We use real address mode timings 

instead of virtual address mode timings. The in¬ 

struction clock timings are ideal timings. Intel 

suggests that 5 percent be added for instructions 

that execute faster than they can be fetched. The 

timings for the individual instructions are given, 

then the adjustment is added into the total weighted 

instruction execution time. 

Table A. 

The Intel 8085. 

Pseudo¬ 
instruction Machine code 

Clock 

cycles 

Move8 LDA datal 13 

STA data2 13 

Move 16 LHLD datal 16 

SHLD data 2 16 

Move32 LHLD datal 16 

SHLD data2 16 

LHLD datal+ 2 16 

SHLD data2 + 2 16 

Incrl6 LHLD datal 16 

1NXH 6 

SHLD datal 16 

Load32 LHLD datal 16 

XCHG 4 

LHLD data 1 + 2 16 

Add8 LDA datal 13 

LX1 #data2,HL 10 

ADD M 7 

STA data3 13 

Add 16 LHLD datal 16 

XCHG 4 

LHLD data2 16 

DADD 10 

SHLD data3 16 

Add32 LHLD datal 16 

XCHG 4 

LHLD data2 16 

DADD 10 

SHLD data3 16 

LHLD datal+ 2 16 

XCHG 4 

LHLD data2 + 2 16 

JNC next (7 + 10)/2= 9 

INXH 6 

next DAD D 10 

SHLD data3 + 2 16 139 

Fadd32 est 2000 

Fadd64 est 4000 

Mull 6 est 1400 

Fmul32 est 2500 
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Table B. 

The Intel 80286/80287. 

Psuedo- 
instruction Machine code pclocks 

System 
clocks 

Move8 MOV datal, AL 5 10 
MOV AL,data2 3 6 

Move 16 MOV datal,AX 5 
MOV AX,data2 3 16 

Move32 MOVE 16 
MOVE 16 16 32 

Load32 MOVE data,AX 5 10 

Incrl6 INC data 7 14 

Add8 MOV datal,AL 5 
ADD data2,AL 7 
MOV AL,data3 3 30 

Add 16 MOV datal, AX 5 
ADD data2,AX 7 
MOV AX,data3 3 30 

Add32 MOV datal,AX 5 
ADD data2,AX 7 
MOV AX,data3 3 
MOV data4,AX 5 
ADC data5,AX 7 
MOV AX,data5 3 60 

Fadd32 FLD datal,ST(0) 38-56 141 
FADD data2,ST(0) 90-120 315 
FST ST(0),data3 84-90 194 650 

Fadd64 FLD datal,ST(0) 40-60 150 
FADD data2,ST(0) 95-125 330 
FST ST(0),data3 96-104 300 780 

MuI16 MOV datal,AX 5 
IMUL data2 24 
MOV AX,data3 3 64 

Fmul32 FLD datal,ST(0) 38-56 141 
FMUL data2,ST(0) 110-125 353 
FST ST(0),data3 84-90 194 688 
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Table C. 
The Motorola 68000 and 68020. 

Psuedo- 
instruction Machine code Best 

68020 
Worst Cache 68000 

Move8 MOVE.B A0@(datal),A0@(data2) 6 13 8 20 

Move 16 MOVE.W A0@(datal),A0@(data2) 6 13 8 20 

Move32 MOVE.L A0 @ (data 1), A0 @ (data2) 6 13 8 28 

Load32 MOVE.L A0@ (datal), A1 3 9 7 16 

Incrl6 ADDQ.W * <l>,A0(datal) 6 12 9 16 

Add8 MOVE.B A0@(datal),Dl 3 9 7 12 

ADD.B A0@(data2),Dl 3 9 7 12 

MOVE.B Dl,A0@(data3) 3 7 5 12 

Add 16 MOVE.W A0@(datal),D1 3 9 7 12 

ADD.W A0@(data2),Dl 3 9 7 12 

MOVE.W Dl,A0@(data3) 3 7 5 12 

Add32 MOVE.L A0@ (datal),D1 3 9 7 16 

ADD.L A0@(data2),Dl 3 9 7 18 

MOVE.L Dl,A0@(data3) 3 7 5 16 

Fadd32 est from Motorola software 150 232 

Fadd64 est 300 464 

Mull6 MOVE.W A0@(datal),D1 3 9 7 12 

MUL.W A0@(data2),Dl 28 34 32 78 

MOVE.W Dl,A0@(data3) 3 7 5 12 

Fmul32 est 300 894 

Table C presents calculations for the Motorola 

microprocessors. Internally, the Motorola 68000 is a 

32-bit processor; externally it is a 16-bit processor. 

The 68020, however, is totally a 32-bit processor. 

The two machines are compatible in software. 

The Motorola 68020 has an instruction cache 

that allows instructions to execute faster than could 

be done from memory. The specifications quote 

three timings for the 68020’s instruction execution 

clock cycles: best, worst, and cache. We quote all 

the times on the chart, but we average the best and 

worst case to estimate performance. 

The Data General MV/8000, an older, 1-MIPS 

super-minicomputer, is a two-address, 32-bit 

extension to the Nova and Eclipse architectures. We 

quote the timings shown in Table D in micro¬ 

seconds for average instruction execution time. 
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Table D. 

The Data General MV/8000. 

Psuedo- 
instruction Machine code Timings 

Move8 LLDB data 1, A 0.44 
LSTB A,data2 0.66 

Move 16 LNLDA data 1, A 0.44 
LNSTA A,data2 0.44 

Move32 LWLDA data 1,A 0.66 
LWSTA A,data2 0.66 

Load32 LWLDA data 1, A 0.66 
lncrl6 LNISZ datal 1.32 
Add8 LLDB datal,A 0.44 

LNADD data2,A 0.66 
LSTB A,data3 0.66 

Add 16 LNLDA datal,A 0.44 
LNADD data2,A 0.66 
LNSTA A,data3 0.44 

Add32 LWLDA datal,A 0.66 
LWADD data2,A 5.50 
LWSTA A,data3 0.66 

Fadd32 LFLDS datal,FPAC 0.66 
LFAMS data2,FPAC 1.54 
LFSTS FPAC,data3 0.44 

Fadd64 LFLDD datal,FP AC 1.10 
LFAMD data2,FPAC 41.36 
LFSTD FPAC,data3 0.88 

Mull6 LNLDA datal,A 0.44 
LNMUL data2,A 2.53 
LNSTA A,data3 0.44 

Fmul32 LFLDS datal.FPAC 0.66 
LFMMS data2,FPAC 2.86 
LFSTS FPAC,data3 0.44 

ter, or memory-to-register operations. This fact il¬ 
lustrates the vagueness of the definition of MIPS. 

When trying to quote a single value for the perfor¬ 

mance of a processor, it is best to choose the general- 
performance pMIPS rating. Since the MV/8000 is 
generally regarded as being a 1-MIPS processor, the 
pMIPS rating is about half of a generally quoted 

MIPS rating. The general pMIPS rating is based on 
executing the more powerful memory-to-memory 
pseudoinstructions, rather than the faster, but less- 
powerful, register-based instructions. 

We have developed a method for estimating 

the performance of a microprocessor using 
a synthetic instruction mix. The synthetic 

instruction mix consists of a set of Move, Add, and 

Multiply instructions. We chose pseudoinstructions 
based on high-level-language considerations and 
assumptions for two reasons. We tried to simplify the 
set and ensure that the resulting pseudoinstructions 

would be simple to determine for specific processors. 
A major decision consideration in the determination 
of the pseudoinstructions was to include various 

operand lengths in the instruction set. 
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A review of the statement forms used in high-level 

languages was used to estimate statement distributions. 
We determined operator and operand distributions 

from studies of scientific, commercial, and systems 
programs. From these statistics we could determine 
equations for converting these application types to 
relative instruction mixes of the pseudoinstructions. 

We used specific processors as examples in trying 

to determine the performance, or pMIPS, ratings. 
Next, we converted pseudoinstructions to specific 
processor assembly language instructions and deter¬ 

mined the clock cycles required to execute each 
pseudoinstruction. We then applied the synthetic in¬ 

struction mix to the pseudoinstruction execution 

times and obtained the pMIPS rating for the dif¬ 

ferent application areas. 

The major advantages of the proposed synthetic 

instruction mix are: 

• It is relatively easy to evaluate; 
• It determines the raw speed of the processor 

rather than evaluating the combined CPU and lan¬ 

guage processor pair; and, 
• It can be used to evaluate a processor that is not 

available physically, such as during design and early 

production phases of a microprocessor. 

Many weaknesses can be found in the methods 
used to determine these pMIPS ratings. However, any 
method of performance evaluation is open to criti¬ 

cism. We feel that the pMIPS rating gives a good 
comparative rating among processors. |jjj 
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Software copyright developments 

Screens and interfaces for computer 
programs protected by copyright 

In the December 1986 issue of IEEE 
Micro we discussed Microstuf’s suit 
against SoftKlone over Crosstalk 

XVI and Mirror, along with the views of 
Microstuf’s counsel that “look and fed” 
piracy of that type deserved to be sup¬ 
pressed. On March 31, 1987, the federal 
district court in Atlanta ruled in favor of 
Microstuf and permanently enjoined the 
manufacture and distribution of Mirror 
so long as it duplicated the main menu 
of Crosstalk XVI (shown on p. 77 of the 
December issue). (Digital Communica¬ 
tions Associates, Inc. v. SoftKlone Dis¬ 
tributing Corp.) SoftKlone has indicated 
that it will revise the main menu of Mir¬ 
ror rather than be forced out of business 
pending any appeals. 

To refresh your memory, Crosstalk is a 
very successful asynchronous modem 
communications program for use with 
IBM PC-type microcomputers. It has a 
set of 87 commands, settings, and pa¬ 
rameters (all of which I refer to as com¬ 
mands) featured in its main menu, and 
the user is supposed to set them in accor¬ 
dance with the needs of his system. 

Because of the number of commands, 
a uniliteral symbol for each command 
is not possible. Microstuf therefore 
adopted a set of biliteral abbreviations 
for the various commands. For example, 
DU for DUplex, PA for PArity, SP for 
SPeed—other commands are LOad, 
POrt, QUit, STop, WRite, XMit. On the 
status screen, the capital letters shown 
here in boldface are displayed in high- 
intensity monochrome, and the user 
understands that the high-intensity bi¬ 
literal is the code for the whole word. To 

set a parameter, such as speed, the user 
enters the biliteral and the correct speed; 
for example, for a rate of 1200 baud, the 
user enters SP1200. 

SoftKlone decided to market an 
emulator using the same status screen, 
apparently on the theory that the public 
is used to Crosstalk and is unwilling to 
learn to use a different user interface. 
The court held that to be copyright in¬ 
fringement. 

What are the implications for soft¬ 
ware innovators and emulators? 
At least superficially, the court 

seems to want to close the door on 
emulators, by forcing them to develop 
different-looking user interfaces. There¬ 
fore, whoever first appropriates the most 
logical and convenient user interface for 
a particular function would seem to be 
able to prevent latecomers from follow¬ 
ing suit. The court seems to believe that 
it was not doing that, but its belief rests 
on erroneous suppositions about how 
user interfaces for microcomputer soft¬ 
ware work and about the range of op¬ 
tions available to designers of menus for 
microcomputer software. 

At the outset, the court refused to 
consider that DCA’s copyright in the 
computer program covered the screens. 
However, DCA had registered a separate 
copyright claim for the screen as a com¬ 
pilation of parameters and commands 
arranged on the status screen in an 
original manner. This was, for obscure 
reasons, classified as a “literary work,” 
although the court protected the graphic 
and visual aspects of the status screen, 

rather than its literary content. The court 
found the “compilation” to be copy¬ 
rightable and to have been infringed. 

The court began its analysis with a 
statement of the customary idea/expres¬ 
sion dichotomy, noting that particular 
expressions of ideas are protected under 
the copyright laws. But ideas, as such, 
are not so protected. The court then ap¬ 
plied the principle to the case before it by 
finding that each of the following is an 
idea: the use of a screen to reflect the 
status of a program, the use of the 
command-driven program, and the use 
of biliterals to activate a command. 

On the other hand, the court found 
that the arrangement of biliterals on the 
screen was an expression, because in this 
program the order in which the user 
enters the commands makes no dif¬ 
ference to the operation of the program. 
For example, whether PArity is entered 
before or after SPeed makes no dif¬ 
ference. Therefore, SoftKlone could 
nave shuffled the rows and columns of 
commands on the status screen without 
impairing the program’s utility. 

Even more important, the court found 
that “the highlighting and capitalizing of 
two specific letters of the parameter/ 
command...has no relation to how the 
status screen functions,” and therefore 
that is expression rather than idea. This 
is the point at which I think the court fell 
down, and the part of the ruling that 
may create the most uncertainty and dif¬ 
ficulty for writers of microcomputer 
software. The court asserted: 

The defendants could have used a wide 
variety of techniques to indicate which 
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symbols the user should type to effectuate 
a command, e.g., different symbols could 
have been chosen, or simply highlighting, 
or capitalizing, or underlining the ap¬ 
propriate symbols, or any combination 
thereof, or placement of the symbols in 
parentheses or square brackets before or 
after the parameter/command. The modes 
of expression chosen by the plaintiff for its 
status screen are clearly not necessary to 
the idea of the status screen. Therefore, the 
plaintiff’s mode of expression of the status 
screen does not merge with the idea of the 
status screen. 

That is to say, the SoftKlone menu 
designer should not have used the format 
SPeed to represent that command, but 
should instead have used one of the fol¬ 
lowing: speed, Speed (SP), [SP] Speed, 
speed, SpeEd, SpeeD, sPEed, and so on. 
(We might add these too: SP—speed, 
SPEED—sp, speed: SP, speed = SP, 
speed...SP.) 

hat is simply foolish. Only four 
screen attributes exist that are 
available for a monochrome PC- 

type microcomputer: high-intensity 
video, inverse video, underline, and 
blinking. That entirely exhausts the op¬ 
tions, besides capital and lowercase let¬ 
ters. The fourth attribute, blinking, is 
useless. No one in his right mind would 
use that for a status screen; it would an¬ 
tagonize any user and probably give the 
user a headache as well. The underline 
attribute is almost as useless. It clutters 
up a screen, and it is not very effective in 
letting letters stand out from the rest of 
the text on the screen. That leaves two 
usable attributes, high-intensity and in¬ 
verse video. 

The use of high-intensity video in an 
all-lowercase word, in my opinion, does 
not sufficiently emphasize the selected 
letters to make them easily and comfort¬ 
ably recognized by the user. We could try 
to verify that, I suppose, by giving peo¬ 
ple flash card tests, but I believe readers 
will agree with me either on the basis of 
their reading the boldface text two para¬ 
graphs back or after trying it out on their 
own microcomputers. Therefore, I be¬ 
lieve that it is necessary to combine high- 
intensity video with caps for a good user 
interface. The same is true, also, I 
believe, for inverse video, although 
perhaps not to quite the same extent. It 
therefore begins to appear that the in¬ 
finite range of expressions available to 
menu writers, which the court imagined, 
is actually limited to something much 

smaller—involving the use of inverse 
video with, at best, either caps or lower¬ 
case letters (and perhaps only caps), and 
high-intensity video with caps. 

Let us turn to the other dimensions 
that the court thought made for infinite 
possibilities. Examination of the ex¬ 
amples shown above for use of other 
than the first two letters will, I believe, 
convince any unbiased viewer of the 
wrongness of using other than the first 
two letters of a command or other key¬ 
word. It confuses the user and looks 
silly. It is simply nonintuitive and not 
good practice to design a user interface 
that way. Finally, the use of parentheses, 
square brackets, and dashes to delineate 
the command biliteral is slightly confus¬ 
ing and at any rate takes more space and 
clutters up the screen. The use of equal 

This use of copyright 

law throttles 
competitors and users. 

It is getting very badly 
out of hand. 

signs may not be confusing, but it does 
take up more room than simply empha¬ 
sizing the selected biliteral. 

In short, we see that the best format 
for a user interface of this type—or at 
least, one of the three best—is preemp¬ 
ted by copyright law, as interpreted by 
the court. The implication is that who¬ 
ever first appropriates the most desirable 
format for a user interface can now pre¬ 
vent competitors from using that format 
when they set out to imitate the origi¬ 
nator’s software, even though they write 
their own code. And after another one 
or two firms enter the market, all the 
usable interfaces will be preempted. 

Presumably, enthusiam for that notion 
was responsible for Lotus’ suing Paper¬ 
back Software and Mosaic Software in 
January 1987 for misappropriating the 
look and feel of Lotus 1-2-3, and for 
VisiCalc’s creators’ (SAPC) suing Lotus 
in April 1987 for the same alleged rip-off 
of VisiCalc’s look and feel. 

Where VisiCalc took the look and feel 
from, I cannot imagine. (That may be 
the next lawsuit.) But, dollars to dough¬ 
nuts, the overwhelming majority of users 
feels like this: 

I expect to be able, without hindrance from 
the legal profession or its greedy clients, to 
enter the first letter or first two letters of a 
command to invoke it, or else move the 
cursor to the command and press Enter, on 
any and all programs of the spreadsheet, 
database, and similar types. I also expect to 
enter FI for help, ESC or backslash for 
escape from present screen, and slash for 
command mode; and I am going to be very 
unhappy if anybody expects me to learn 
something different. I have a number of 
similar expectations, and I do not want to 
be forced to change them because of the 
copyright laws. It is hard enough to learn 
how to use these tools, without having to 
learn to use a new kind of interface every 
time, and I have preferable ways to spend 
my time (such as drinking beer and watch¬ 
ing TV). 

This use of copyright law to throttle 
competitors, and also the user 
community, is ridiculous. And it is 

getting very badly out of hand. I have a 
modest proposal for action by the Com¬ 
puter Society of the IEEE. 

A standards committee (or if it is too 
hard and time-consuming to go through 
the IEEE bureaucracy, then a Software 
Users Defense Committee) should estab¬ 
lish criteria for good user interfaces for 
microcomputer programs. Part of this 
effort (or all of it) should be criteria for 
proper menus or screens or a set of 
them. For example, where there are only 
a few commands on a screen, the equal 
sign or a box with vertical lines sepa¬ 
rating uniliteral commands from their 
explanations will probably be considered 
an acceptable alternative. But for 
crowded screens, it may well be that we 
will all agree that high-intensity video 
and caps for the first one or two letters 
of a command or keyword is the best op¬ 
tion, perhaps along with inverse video 
for some uses. 

Without going into the details of how 
to prescribe the end result, my point is 
that I would like to see an agreed-upon 
approach to user interfaces. Then, I 
would like to see it put into the public 
domain for the benefit of users of com¬ 
puter programs, who do not want to use 
unfriendly interfaces or learn to use 
many different ones, and who would be 
happiest if they kept seeing the same old 
interface all the time. 

The idea would be that anyone who 
stuck to the IEEE interface would be im¬ 
mune from harassment under the copy¬ 
right laws. Say previous rights under the 
copyright laws were asserted to some 
technique that was part of the IEEE- 

Continued on p. 89 
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In my April column I made some rash 
statements about what I was going to 
do this month. I’m not going to do 

any of them. Instead, I’ve reviewed two 
books that are similar to one another in 
important ways. One deals with CD 
ROMs and the other with desktop pub¬ 
lishing, two rapidly growing areas for 
small computer applications. Each is 
based on a relatively new hardware 
technology that is quickly dropping in 
price into the consumer product range. 

The CD ROM book is written for de¬ 
velopers by developers, the other is writ¬ 
ten for end users by end users. Each 
aims at giving the reader an orientation 
to the given field. Both books were pro¬ 
duced quickly in an effort to bring out in 
book form information of the currency 
usually found only in periodicals. Both 
show the bad effects of this haste, al¬ 
though 1 am not aware of factual errors 
in either of them. 

CD ROM 2: Optical Publishing, ed. by 
Suzanne Ropiequet with John Einberger 
and Bill Zoellick (Microsoft Press, Red¬ 
mond, Wash., 1987, 384 pp., $22.95) 

Imagine 500 megabytes on a mass- 
produced disk you can carry around in 
your pocket and access with consumer- 
grade hardware! It’s hard to grasp at 
first, but it soon hits you that this is a 
technology that you ought to find out 
about. 

The subtitle of this book is “A Prac¬ 
tical Approach to Developing CD ROM 
Applications,” and that’s a pretty good 
description. What’s a CD ROM? Here’s 
the CD part, from the book’s glossary: 

Compact Disc: The trademark name for 
an injection-molded aluminized disc, 12 cm 
in diameter, which stores high-density 
digital data in microscopic pits that a laser 
beam can read. Conceived by Philips and 
Sony, it was originally designed to store 
high-fidelity music for which Compact Disc 
Digital Audio now is a standard format ac¬ 
cepted worldwide. Because of its very large 

data storage capacity, the Compact Disc 
now is used as a text/data medium in elec¬ 
tronic publishing (CD ROM). 

The physical format used for storing 
general-purpose digital data for personal 
computers on CDs is established in the 
CD ROM standard, also known as the 
Yellow Book. The de facto logical for¬ 
mat standard is the High Sierra Group 
Proposal, the work of a group of people 
from Apple, DEC, Hitachi, Microsoft, 
3M, Philips, Sony, and others. Under 
these standards, a CD ROM contains 
270,000 sectors of 2048 data bytes each, 
or a total of more than 540 megabytes. 

The most interesting CD ROM appli¬ 
cations probably haven’t been thought 
of yet, but a typical current application 
is an electronically published encyclo¬ 
pedia with full support for browsing and 
for following references from section to 
section. Potential developers of applica¬ 
tions like this will find that the book is 
an excellent introduction and reference, 
but there is one caveat before we proceed 
with the details. The publisher is a di¬ 
vision of Microsoft Corporation, an ac¬ 
tive participant in the development of 
this field, so you may not be getting total 
objectivity. 

The book is a collection of 16 essays, 
mostly by different authors, covering 
just about anything that a prospective 
developer of CD ROM applications 
might want to know. The authors are ex¬ 
perts in their fields, and each chapter is 
well organized and full of interesting 
material. I recommend reading this book 
cover to cover, then keeping it around 
for reference. 

Actually, the book starts off pretty 
badly. Page one contains a typographical 
error, an example of sloppy editing, and 
an absurd statement. In fact, if you’re 
sensitive to this sort of thing, you ought 
to start with Chapter 2. The editing 
never gets much better, but the typos 
taper off and the contents become a lot 
more substantial. (Having complained so 

pointedly about the editing, I suppose I 
ought to give an example. My favorite is 
the statement that certain techniques 
“...are never perfect—almost always 
retrieving far more irrelevant data than 
you need.”) 

The four chapters on text preparation 
and retrieval make up the most issue- 
oriented section of the book and one of 
the most interesting. How, for example, 
can existing textual material be trans¬ 
ferred to CD ROM in such a way that its 
structure is visible to retrieval software? 
Even though a huge proportion of every¬ 
thing published today is originally pro¬ 
duced on computers, many barriers exist 
to accessing even the text of those origi¬ 
nals; recovering the structure without pro¬ 
hibitively expensive human intervention is 
usually impossible. One answer suggested 
in the book is to use the Standard for 
Electronic Manuscript Preparation and 
Markup devised by the Association of 
American Publishers. Widespread use of 
the AAP standard, it is suggested, will 
depend upon the availability of word 
processing software that supports it. Is 
this a hint of Microsoft’s future plans? 

Another interesting issue is searching 
versus browsing as approaches to docu¬ 
ment retrieval. Searching, the “stan¬ 
dard” approach, is shown to have severe 
problems. There seems to be an inverse 
relation between the two key measures of 
searching effectiveness: completeness and 
relevance. The larger the list of docu¬ 
ments retrieved using a given search key, 
the lower their average relevance to the 
user’s problem. The higher the average 
relevance of the documents retrieved, the 
greater the proportion of relevant 
documents that will not be retrieved. 
Browsing, on the other hand, is more 
natural and more effective, but it re¬ 
quires the system to know the structure 
of documents, not just their text. 

These issues are not new, but in the 
past they have had to be faced only in 
large systems. With CD ROMs far more 
system designers will need to deal with 
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these issues, and they will be doing so for 
applications of a different scale, in which 
the cost/benefit analyses of the various 
approaches will depend upon different 
parameters. 

Another problem that is not new is 
selecting the right index structures for 
huge text databases. But the problem is 
given a new twist in the CD ROM en¬ 
vironment. The read-only nature of CD 
ROMs, their large capacities, and their 
slow access times are all factors that in¬ 
fluence the selection of index structures. 
For example, a lookup that requires six 
disk accesses may be perfectly acceptable 
for a standard hard disk but painfully 
slow on a CD ROM. 

Another interesting section of the 
book provides a programmer’s view of 
graphics and audio. Many books talk 
about these subjects, but this one seems 
to strike just the right balance between 
brevity and thoroughness. The reader is 
assumed to be intelligent and generally 
sophisticated about computer technology 
and applications, but is not assumed to 
have a background in electronics or to 
know much about graphics or audio. 

If you decide to develop applications 
for CD ROM, you will want to obtain 
and study the High Sierra Group Pro¬ 
posal, currently on its way to becoming 
an international standard. A chapter of 
the book contains a description of the 
proposed format and the issues behind 
it, written by two members of the High 
Sierra Group. The proposal defines a full 
(Level Three) implementation, which 
provides essentially all the needs of the 
various sponsoring organizations. 

Two standard subsets are specified. 
Level One is for minimal systems, and 
Level Two is slightly augmented to pro¬ 
vide for compatibility with CD-I. (CD-I 
is a controversial proposed standard 
hardware/software environment for con¬ 
sumer products to be delivered beginning 
in 1988. This book contains little men¬ 
tion of CD-I and no mention of the con¬ 
troversy surrounding it.) 

Two related subjects are the protection 
and updating of the data in CD ROM 
products. Those of you who regularly 
read Richard Stern’s MicroLaw columns 
will be familiar with many of the legal 
issues in the area of protection of in¬ 
tellectual property, but the discussion in 
this book focuses on the specific prob¬ 
lems raised by the nature of CD ROMs. 
For example, the doctrine of first sale 
gives the purchaser of a work the right to 
display it publicly, while the copyright 
holder retains the right of performance. 
What these terms mean for a CD ROM 

database, possibly containing music and 
images, is not clear. If you’re going to 
develop CD ROM applications, you’ll 
want to know a lot more about issues 
like these. 

While updating of CD ROM data¬ 
bases has legal ramifications, the soft¬ 
ware issues are even more interesting. 
The logical format embodied in the High 
Sierra Group Proposal makes it possible 
for one CD ROM of a multiple CD ROM 
set to alter the interpretation of data on 
other CD ROMs of the set. This makes it 
possible for an updating CD ROM in ef¬ 
fect to delete or modify data previously 
supplied. Thus, a database might be sup¬ 
plied on five CD ROMs, and periodic 
updating of only the fifth CD ROM 
could effectively update the entire set. 

The book also contains practical ad¬ 
vice for potential developers. While the 
one-minute business plan contained in 
Chapter 2 isn’t worth much, there are 
practical, advice-filled chapters on disk 
origination and mastering, and there are 
two interesting and instructive case 
studies. And there’s an appendix called 
“Resources,” which contains classified 
listings of firms involved in the CD 
ROM field. 

If you read IEEE Micro and you don’t 
already have a pretty good grasp of the 
subjects in this book, then it’s a “must 
read” for you. 

The Art of Desktop Publishing, 2nd ed., 
Tony Bove, Cheryl Rhodes, and Wes 
Thomas (Bantam, Toronto & New York, 
320 pp., $19.95; $24.95 in Canada) 

This book is subtitled “Using Personal 
Computers to Publish It Yourself,” and 
because that’s exactly what the authors 
have done, you can get a good idea of 
the pros and cons of being your own 
publisher. The authors, by virtue of their 
experience with this and other publishing 
projects, can help to guide your steps 
along this path, and the book, as a sam¬ 
ple product, can teach you lessons that 
the authors didn’t make explicit. 

The first question you should ask 
yourself when considering a publishing 
project is “What do I hope to accom¬ 
plish?” If your answer is along the lines 
of getting your message out quickly and 
correctly, then personal publishing is 
worth considering. For example, the 
authors produced this second edition in 
two weeks. If, on the other hand, your 
answer has a heavy component of im¬ 
pressing the reader with the quality of 
the result, you’d better think seriously 

about getting professional publishing 
help. In this respect, a publishing project 
is a lot like a hardware or software engi¬ 
neering project. 

This book is written by three people 
who are far from amateurs in publishing, 
but the most generous grade I can give it 
as an example of publishing is B-, and an 
even lower grade could easily be justi¬ 
fied. On the other hand, I enjoyed read¬ 
ing the book and found parts of it to be 
useful and informative. It has the flavor 
of a collection of trade-press articles and 
newsletter excerpts wedded to tutorial ar¬ 
ticles on page makeup programs (mostly 
Pagemaker). 

This makes a convenient package for 
someone who doesn’t follow the trade 
press, doesn’t subscribe to a newsletter, 
and can’t learn enough from the manu¬ 
als accompanying the page makeup 
programs. 

At this point I should say that Aldus 
Corporation shipped me Pagemaker for 
the IBM PC when it came out in Febru¬ 
ary. I don’t know if this was true in the 
past, but the manuals that accompanied 
that shipment don’t seem to need to be 
supplemented by outside tutorials. 
They’re full of tutorial information and 
production advice. 

To pull all of the above pros and cons 
into a recommendation, I’d say that 
there are many people who will want or 
need to learn more about personal pub¬ 
lishing and to purchase software and 
equipment. If you’re one of these people 
and you feel a little bewildered by all 
you’ve heard about the “desktop pub¬ 
lishing revolution,” this book can help. 

Next time 
As noted earlier, last issue’s prediction of 
future plans proved to be completely in¬ 
correct, largely because I simply didn’t 
get far enough in reading Maurice Bach’s 
Design of the UNIX (TM) Operating 
System. I hope to finish that book and 
to look at other interesting books and 
software for the August issue. 

Reader Interest Survey 
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At the March 1987 meeting of the 
IEEE Standards Board several 
new standards were approved. 

Among them were: 

• 802.5A, LAN: Station Management 
(supplement to IEEE Std. 802.5-1985), 

• 854, A Radix Independent Standard 
for Floating-Point Arithmetic, 

• 1014, Specification for a Versatile 
Backplane Bus (VME), and 

• 1016, Software Design Descriptions, 
Recommended Practice. 

A project newly authorized at that 
meeting was PI 141, Forth: A Microcom¬ 
puter Language Standard. This project is 
likely to become a joint project with X3. 

our backplane bus standards proj¬ 
ects sponsored by the Technical 
Committee on Microprocessors 

and Microcomputers, or TCMM, have 
passed their sponsor ballots. They have 
been submitted to the IEEE Standards 
Board for adoption as IEEE standards. 
These projects are: 

Seven new project authorizations are 
being requested of the IEEE Stan¬ 
dards Board by the Computer So¬ 

ciety’s TCMM. These projects are: 

• PI 151, Modula II, A Modular High 
Level Programming Language, 

• PI 152, Smalltalk, An Object Ori¬ 
ented Programming Language and 
Environment, 

• PI 153, Page Descriptor Language, 
• PI 154, PILOT, A Program Instruc¬ 

tion Learning or Teaching Language, 
• PI 155, A High Speed Backplane In¬ 

strumentation Bus, 
• PI 156, Connectors and Mechanical 

Packaging for High Reliability Bus 
Structures, and, 

• P1496, Rugged Bus, A Very High 
Reliability Bus Structure. 

In addition, a project authorization 
has been requested for the revision of 
IEEE 755, Extending High-Level Lan¬ 
guage Implementations for Micropro¬ 
cessors, a trial-use standard. This has 

been a contentious standard. It has 
already passed an appeal against its 
adoption that was filed by The Pascal 
Joint Committee chairman. 

If these project requests are approved, 
I will include the details of the scope and 
list the chairman of each project in the 
next issue of IEEE Micro. 

On another note, James (Bob) 
Davis, the chairman of the Micro¬ 
processor Standards Committee, 

has appointed Paul Borrill to be the chair¬ 
man of P896.2, the project to develop a 
Futurebus Firmware Standard. Borrill can 
be reached at: 

Spectra Tek US Ltd. 
Swinton Grange 
Malton 
North Yorkshire Y017 OQR 
England 
Telephone: (0653) 5551. 
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terest to professionals in the microcom¬ 
puter/microprocessor industry. Send infor¬ 
mation for inclusion in MicroNews one 
month before cover date to Managing 
Editor, IEEE MICRO, 10662 Los Vaqueros 
Circle, Los Alamitos, CA 90720-2578. 

Materials capture industry’s imagination 

Materials don’t seem to be the subject 
to stir the imaginations of most of us. 
After all, what can be new and inter¬ 
esting about such a standard topic? 

But a great deal of recent news has 
centered on the changes in the materials 
used by the electronics industry to pro¬ 
duce commercial and military devices. 
These changes have been so dramatic in 
one case at least that we find ourselves 
speculating about the materials of the 
future. 

Time magazine devoted its May 4, 
1987, cover to the multitude of effects 
that the recent advances in supercon¬ 
ducting materials will have on our world. 
Another interesting material, gallium 
arsenide, though no longer brand new to 
the market, still inspires electronics 
manufacturers who hope to capture its 
unusual qualities to produce better 
devices. And just now reaching the com¬ 
mercial market are chips based on dia¬ 
mond thin film. 

These materials are widening our hori¬ 
zons in more ways than one; here’s a 
quick look at some of the research and 
commercial plans. 

Superconductors 
When can we expect to see superfast 

computers? 
Very, very soon would seem to be the 

answer if current research succeeds in be¬ 
ing applied. 

Recent physics advances in high- 
temperature superconducting materials 
have been making headlines as com¬ 
panies, government agencies, and univer¬ 
sities around the world race to experi¬ 

ment in transmitting electricity with little 
loss of energy. Superconducting mater¬ 
ials lose all resistance to electricity below 
a specific temperature, a quality very 
likely to produce much faster electronic 
devices and thin films. 

The larger energy gaps experienced in 
these materials occur 10 times more 
often than do those in present supercon¬ 
ducting integrated circuits. This energy 
increase means faster devices can be pro¬ 
duced; it also suggests that the physics of 
these materials may be very different 
from that of conventional super¬ 
conductors. 

The superconductor race. Discovered 
in 1911 and advanced slowly over the 
years, superconductivity only recently 
became the object of concentrated 
research. Four significant achievements 
occurred in 1986. Early in the year K. 
Alex Mueller and J. Georg Bednorz of 
the IBM Zurich Research Laboratory re¬ 
ported that a ceramic containing lan¬ 
thanum, barium, copper, and oxygen 
showed traces of superconductivity at 30 
degrees kelvin. (The Kelvin scale starts at 
a temperature of absolute zero, the point 
at which all motion of atoms ceases.) 
Before this discovery, the best commer¬ 
cially available superconductors were 
cooled to 23.2 K by bathing them in 
$5-a-liter liquid helium. 

Later that year scientist Shoji Tanaka 
at the University of Tokyo reported a 
structure for the compound, convincing 
others of the reality of the discovery. 

Last December physicists Robert J. 
Cava of AT&T Bell Laboratories and 
Paul C. W. Chu of the University of 

Houston discovered superconductivity at 
36 and 40.2 K. That same month Z. X. 
Zhao at the Chinese Academy of 
Sciences reported success at 44 K, and in 
February Chu repeated his achievement, 
this time at 93 K with yttrium barium 
copper oxide. At 77 K it is possible to 
use the more-readily available, 10-cent-a- 
liter liquid nitrogen to cool materials. 

Since February, scientific investigators 
at the Argonne National Laboratory 
have found at least 13 other ceramics 
that are also superconducting at temper¬ 
atures between 90 and 95 K. Argonne 
crystallographers have determined the 
structure of the material discovered by 
Chu. These scientists precisely located 
the oxygen atoms in the crystals with the 
help of equipment called the Intense 
Pulsed Neutron Source. Information 
about the structure should give hints 
about other types of materials that might 
be superconducting. 

While it took scientists 75 years to 
raise superconductivity temperatures by 
19 degrees, it took only a little over a 
year to raise it from 23 to 95 K. 

But what’s happened lately? Applica¬ 
tions of the new superconductors might 
include their use as interconnects in semi¬ 
conductor computers at liquid nitrogen 
temperatures. Pattern microstructures 
have been obtained and are currently be¬ 
ing tested at Stanford’s Department of 
Applied Physics. 

Argonne National Laboratories has 
been producing thin films, pellets, and 
0.006-inch wires from the new material 
and measuring their characteristics. Sci¬ 
entists at AT&T Bell Laboratories in 
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Murray Hill, New Jersey, reported that 
they also have been able to make wires 
flexible enough to be wound into coils. 
These are key steps in readying the 
materials for commercialization. 

Just recently, IBM announced a thin- 
film superconducting device based on 
copper-oxide material. The junction 
devices measure one one-hundredth the 
thickness of a human hair and are called 
Superconducting Quantum Interference 
Devices. SQUIDs are chilled by liquid 
nitrogen. 

An even more spectacular IBM an¬ 
nouncement concerned its success in in¬ 
creasing the current-carrying capacity of 
superconductors by 100 fold. IBM scien¬ 
tists grew a one-inch-diameter thin-film 
single crystal and cooled it below 77 K. 
The crystal carried a current of 100,000 
amperes per square centimeter. When the 
scientsts cooled the thin film to near ab¬ 
solute zero, they found that it conducted 
5 million A/cm 2. 

What’s waiting in the future? Well, 
researchers at Wayne State University 
recently announced they had seen 
evidence of superconductivity at 240 K. 
And, Paul Chu foresees superconductivi¬ 
ty at 300 K (room temperature) eventual¬ 
ly. And, with IBM’s current-carrying ad¬ 
vances, we can expect to see widespread 
use of these materials in the variety of 
applications promised us on the cover of 
Time. It seems we’ll all be winners in the 
superconductor race. 

GaAs 
Another material continuously gener¬ 

ating industry interest because of its per¬ 
formance advantages is gallium arsenide. 
Two agreements have joined Rockwell 
International with IBM and Honeywell 
with the Defense Advance Research Pro¬ 
ject Agency in the pursuit of GaAs 
technology advances. 

The Rockwell International/IBM 
agreement calls for cooperative develop¬ 
ment of advanced gallium arsenide 
technology and production techniques. 
Their effort will concentrate on develop¬ 
ing cost-effective optoelectronic and 
digital components needed for special 
uses in computers and telecommunica¬ 
tions equipment of the future. 

The program involves development 
teams at Rockwell’s California facilities 
in Newbury Park and Thousand Oaks 
and at IBM’s New York facilities in East 
Fishkill and Yorktown Heights. 

The Honeywell/DARPA contract has 

recently produced and demonstrated an 
integrated GaAs monolithic receiver chip 
at 1-gigabit clock frequencies. The 
second-generation chip contains a photo¬ 
detector and 200 gates on the same GaAs 
substrate. It is useful for optical inter¬ 
connects between computer chips and 
from computer to computer. 

According to Honeywell, the 2mm x 
2mm device is compatible with current 
manufacturing processes using direct ion 
implantation MESFET technology and 
metal organic chemical vapor deposition 
for epitaxial growth. The receiver con¬ 
tains an optical detector, preamplifier 
circuit, and 1:4 demultiplexer. It was 
designed to decode a 1-gigabit optical 
signal input into four parallel 250M-bit 
electrical outputs. 

Meanwhile, help in production control 
has come from the National Bureau of 
Standards, which recently developed two 
polarized infrared light systems designed 
to detect flaws in GaAs semiconductor 
materials. Both infrared systems are non¬ 
destructive methods that wafer manu¬ 
facturers can use to screen materials 
before marketing. One system examines 
an entire wafer, while the other employs 
a 75- to 600-X microscope to view 
isolated wafer portions. 

Both systems digitally store images 
and use false-color graphics to transmit 
infrared intensity, which could indicate 
potential problems. Bureau researchers 
use the techniques and will assist busi¬ 
nesses in setting up their own systems. 

Diamond thin film 
Research and development into DTF- 

based chips is progressing to the com¬ 
mercial market in Japan, according to a 
recent International Resource Develop¬ 
ment report. Shinetsu Chemical Com¬ 
pany is shipping diamond film-coated 
knives for electron microscopy, and Sony 
is marketing a loudspeaker tweeter that 
uses the material. Sumitomo is expected 
to soon be releasing its first DFT-based 
chips for applications involving hostile 
environmental conditions, such as in 
spacecraft or automobile engines. 

Diamond film possesses unique 
mechanical, electronic, and optical prop- 
perties, which have applicability in a 
wide range of military and commercial 
markets. For example, it seems that DTF 
chips will be superior in speed and in 
environmental resistance properties to 
gallium arsenide. 

Despite early research at Case Western 
Reserve in the US, it was researchers in 
Moscow who in 1977 came up with some 
key insights into how to manufacture 
synthetic diamond in thin-film form, 
using chemical vapor deposition tech¬ 
niques. Japan, the USSR, and the US 
competed to find commercially viable 
manufacturing processes for the new 
material. 

Today, the Japanese are in the lead, 
with 1987 shipments expected to total 
$17 million. Industry research reports 
predict the $400-million level will be 
approached by 1993. 

Will we soon replace the Fourier Transform 

with the Hartley Transform? 

A native Australian working at Stan¬ 
ford University has invented an algo¬ 
rithm to replace the famous Fourier 
Transform and is trying to build a chip 
containing the algorithm. Called the 
Hartley Transform by inventor Ronald 
Bracewell, the new equation cuts in half 
the amount of time needed to perform 
the same mathematical analysis, uses half 
the computer memory, and resides on a 
much smaller or lighter chip than those 
containing the Fourier equation. 

Bracewell first became fascinated with 
the Fourier Transform in school ill 1940. 
He lectured on Fourier analysis in 1955 
and published a book containing 
Fourier’s work in 1965. “It has sort of 
permeated my whole life, you might 

say,” comments Bracewell. 
Five years ago Bracewell decided to 

write down his thoughts about ways of 
possibly improving on Fourier; he based 
his idea on the work of Ralph Hartley 
done at Bell Laboratories in 1942. The 
result was a fast algorithm—developed, 
as Bracewell says, with “...some of the 
hardest mind grinding I ever did. It took 
me months and months, straining my 
brain.” 

Mindful of the need to patent the 
equation, Bracewell is trying to convince 
other engineers to build a chip contain¬ 
ing the algorithm so it will qualify under 
the law as having a physical presence. 
Taiwan, he has heard, is presently devel¬ 
oping just such a chip. 
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MicroNews 

New staff member 
Assistant Editor Christine Miller joins 

IEEE Micro after assignment with both 
IEEE Expert and Design & Test 
magazines. She holds a BA in English 
from California State College at Fuller¬ 
ton, has taught English and has authored 
some 25 feature magazine articles, in¬ 
cluding a series on air and water pollu¬ 
tion. In addition to previous magazine 
editorial experience, she is editor of a 
financial planning book to be published 
this summer. 

Her interests in addition to literature 
are science, drama, music, and the art of 
conversation. 

Christine is excited about working 
on our staff and welcomes your 
communiques. 

China’s computer imports 

to reach $3.5 billion 
The western nations will export 4200 

minicomputers and mainframes and 
160,000 microcomputers to The People’s 
Republic of China in the next five years, 
predicts an International Data Group an¬ 
nouncement. This represents a total im¬ 
port value of $3.5 billion in computers 
and related technology. 

IDG, based in Framingham, Massa¬ 
chusetts, has direct experience doing 
business in the P.R.C. It publishes the 
biweekly newspaper, China Computer- 
world, which is headquartered in Beijing, 
has 100,000 paid subscribers, and is said 
to be read by two million people. 

DEC-compatible 
controller guide 

Dilog is offering a product guide to its 
DEC-compatible peripheral and com¬ 
munications controllers. The guide has 
been designed as an exact-size replica of 
a dual-size disk drive controller, com¬ 
plete with die-cut edge connectors and 
embossed ICs. The guide provides infor¬ 
mation on products for use with Micro- 
VAX, PDP-11, LSI- 11, and VAX Uni¬ 
bus computers as well as listings of all 
disk and tape drives that are compatible 
with the company’s controllers. 

For a free copy write to Dilog Product 
Guide, PO Box 6270, Anaheim, CA 
92806. 

$4-billion market projected for 80386-related products 

Computers, software, and peripherals 
supporting the Intel 80386 32-bit micro¬ 
processor should top $4 billion in 1991 
and level out to about $3.4 billion by 
1993, according to recent research 
findings. The increased computing 
power of the chip promises higher speed, 
multitasking, and large memory access, 
advantages avidly sought by users. 

Areas expected to be affected by the 
32-bit computers are the CAD/CAE and 
office automation markets now served 

by supermicros, minicomputers, and 
mainframes. The report cites the key 
issues of standardization, IBM’s market¬ 
place, and operating systems as crucial in 
planning market strategy. 

Markets for Products Based on the In¬ 
tel 80386 Microprocessor: Systems, Soft¬ 
ware, and Peripherals can be purchased 
for $995 from Market Intelligence 
Research Company, 4000 Middlefield 
Road, Palo Alto, CA 94303; 
(415) 856-8200. 

Museum offers early PC slides 
Collecting unique relics of the personal 

computer revolution is becoming easier 
for hobbyists and other interested 
parties. 

Now, a color slide series of PC images 
can be obtained from The Computer 
Museum in Boston. Twenty images of 
the first personal computers, hobbyist 
milestones, homebrew and single-board 
computers, and early and classic com¬ 
mercial machines can be purchased for 

$20. Volume I of the series, available for 
$45, contains 48 slides of early calcu¬ 
lating devices and computers, supercom¬ 
puters, logic and memory technologies, 
and classic integrated circuits. 

Write to The Computer Museum 
Store, 300 Congress Street, Boston, MA 
02210, to order either volume. Please 
add $2.50 to cover postage and handling 
charges. 

Current literature 
National Semiconductor Corporation 

is providing customers with a real-time 
electronic catalog of RETS military test 
specifications for ICs, which can be ac¬ 
cessed by company sales personnel in the 
US. The directory includes a listing of 
the electrical tests performed on all 
military devices qualified by the com¬ 
pany and a history of test-program 
revisions. 

National Semiconductor Corporation, 
PO Box 58090, Santa Clara, CA 
95052-8090; (408) 721-5407. 

A three-tape audiocassette course, “An 
Introduction to the MC68020 32-Bit 
Microprocessor,” discusses the major 
enhancements of the Motorola device 
over the original MC68000. Course 
notes, user’s manual, and related 
literature support the self-paced tapes. 

Motorola Semiconductor Products 
Sector Technical Operations, PO Box 
52073, Phoenix, AZ 85072; (800) 
521-6274; $95. 

The design and test of a 16-bit com¬ 

puter system around the Motorola 
MC68000 is the aim of this 592-page text 
from Bucknell University’s College of 
Engineering. Author Alan D. Wilcox in¬ 
tegrates the principles of engineering 
with practical hands-on experience. 

Prentice-Hall, Englewood Cliffs, NJ 
07632; (800) 526-0485; $42.95. 

Memory Discontinued Devices dis¬ 
plays specifications, logic drawings, and 
pinout information for 15,500 memory 
ICs previously available from 92 manu¬ 
facturers but no longer in production. 
Devices covered include RAMs, ROMs, 
PROMs, EPROMs, EEPROMs, pro¬ 
grammable logic ICs, code converters, 
European- and Asian-character gener¬ 
ators, and bubble memories. 

D.A.T.A., Inc., 9889 Willow Creek 
Road, San Diego, CA 92126; (800) 
854-7030; in California, (800) 421-0159; 
$65. 

Infonet, Inc., is publishing the Japan 
Computer Index ‘87, an English-lan- 
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guage hardware/software directory of 
the Japanese computer industry. Over 
5000 company listings, analyses, reviews, 
and projections appear. 

Infonet, Inc., 5F The 7th Industry 
Bldg., 1-20-14 Jinnan, Shibuya-ku, 
Tokyo, Japan 150; (03) 770-4483; soft¬ 
ware, US$280; hardware, US$215. 

Information about IEEE-488 bus in¬ 
terface (GPIB) products for IBM PCs 
and compatibles, Apple, AT&T, Tandy, 
Texas Instruments, Apollo, Sun, Com¬ 
paq, Motorola, and NCR appears in the 
24-page 1987 catalog published by Na¬ 
tional Instruments. 

National Instruments, 12109 Technol¬ 
ogy Boulevard, Austin, TX 78727-6204; 
(800) 531-4742; in Texas (800) 
IEEE-488; free. 

The biweekly Superconductors Update 
is a printed current-awareness subscrip¬ 
tion service containing abstracts of 
superconductor research and biblio¬ 
graphic citations from patent documents, 
journals, and other publicly available 
literature. The service includes a 650- 
page book, Superconductors Update, 
January-March 1987, and biweekly 
updates. 

MicroLaw 
Continued from p. 82 

recommended interface. In this case, it 
should be a Computer Society project to 
do the research needed to show either (1) 
that someone else did it earlier than the 
claimant of alleged previous rights, or (2) 
that functional considerations about a 
proper interface make the technique 
functional and utilitarian, and thus an 
idea rather than an expression. 

If the software publishers had any 
common sense, they would join us in 
devising the standard. As Dan Bricklin, a 
cocreator of VisiCalc, warned at a recent 
Massachusetts Computer Software Coun¬ 
cil roundtable: “A lot of companies are 
going to rise and fall because some 
lawyer will be able to pull off a court 
trick. In this climate, if I were an in¬ 
vestor, I’d be afraid to invest in any soft¬ 
ware company.” 

Or, as Cullinet Software’s former 
president John Cullinane put it: “It’s 

STN International, 2540 Olentangy 
River Road, Columbus, Ohio 43202; 
$750. 

Analogic Corporation is offering its 
Data Conversion Systems Digest without 
charge to chief engineers and system 
designers. The compendium supplies 
practical tutorial and reference material 
that addresses typical design problems 
encountered by engineers. Topics include 
A/D conversion architectures, system 
applications, and ground loops and in¬ 
terference. 

Analogic Sales Administration Office, 
8 Centennial Drive, M/S 5E7, Peabody, 
MA 01961; (617) 246-0300. 

Three recent books from Meckler 
Publishing offer guides to CD ROMs. 
Publishing with CD-ROM written by 
Patti Myers explores compact disc op¬ 
tical storage technologies for providers 
of publishing services ($19.95). CD- 
ROM and Optica! Publishing Systems by 
Tony Hendley assesses the impact of op¬ 
tical read-only memory systems on the 
information industry and compares them 
with traditional publishing systems 
($39.50). The Guide to CD-ROMs in 
Print is an annual reference book using 

going to have a deadening effect in 
regard to innovation. Because of the 
legal uncertainty about look and feel, the 
issue tends to inhibit dynamic, small, 
underfunded organizations from devel¬ 
oping something better. These days, it’s 
very important that you retain very good 
counsel.” He has several good points, 
there. I do not want to knock retaining 
very good counsel—that is a first-class, 
highly recommended idea. But it would 
be considerably cheaper just to devise a 
good industry-standard interface and 
adhere to it as insurance and immuniza¬ 
tion against copyright infringement 
litigation over your interface. 

Then we could concentrate on liti¬ 
gating more important and profound 
copyright issues, such as those past 
favorites—who really should own the ex¬ 
clusive rights to the desktop metaphor 
and the trashcan icon or whether copy- 

the books-in-print concept to list cur¬ 
rently available CD ROMs and other 
digitally encoded optical medium prod¬ 
ucts ($29.95). 

Meckler Publishing, 11 Ferry Lane 
West, Westport, CT 06880; (203) 
226-6967. 

A new monthly publication edited by 
Charles Rolander, Electronics Industry 
Outlook, tracks business trends in the 
electronics industry. The report features 
analyses and forecasts using a top-down 
approach for continuity and computer¬ 
generated charts and graphs for 
readability. 

HTE Management Partners, 4575 
Scotts Valley Drive, Suite 105, Scotts 
Valley, CA 95066; (408) 438-2395;price 
not stated. 

Reader Interest Survey 

Indicate your interest in this department 

by circling the appropriate number on the 

Reader Interest Card. 
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right should protect the logic blown into 
a programmed field-programmable device. 

In a future issue I will fill you in on a 
new wrinkle in audiovisual work copy¬ 
rights—how copyright protects the 
gestures of mechanical toys like Teddy 
Ruxpin, and how that theory can be ap¬ 
plied to protect printed circuit boards for 
a mechanical parrot vending machine. 

Reader Interest Survey 
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Reader Interest Card. 

High 171 Medium 172 Low 173 
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New Products 

Marlin H. Mickle 
University of Pittsburgh 

Scanning input device aids pen plotters 

With the Scan-CAD accessory, Houston Instrument DMP-50 series plotters can be 
converted into an automatic digitizer. As a drawing is scanned, the hard-copy im¬ 
age is converted by the scanning software into a raster data file, which can be used 
as is or read by other software for further conversion into vector data. 

Send announcements of new 
microcomputer and microprocessor 
products, and products for review, 
to Managing Editor, IEEE Micro, 
10662 Los Vaguer os Circle, 
Los Alamitos, CA 90720-2578. 

Dial-back system prevents 

unauthorized access 
A security unit from Britain’s GEC 

Telecommunications Ltd. prevents 
unauthorized access to a computer over 
standard PTT lines—even when an in¬ 
truder enters a legitimate user name and 
password—by discontinuing the connec¬ 
tion and redialing the caller. 

When a call is received, the DSU 0496 
dial-back security unit responds with a 
welcome message, prompts for a user 
name and password, and breaks the con¬ 
nection. The name and password given 
by the caller are then checked against an 
authorized list stored in memory; if 
found to be legitimate, the caller is con¬ 
tacted by the unit on a telephone number 
that has been approved for that par¬ 
ticular user. Computer connection is 
limited to programmed telephone 
numbers. 

Managers can enter names, passwords, 
and telephone numbers for 200 users by 
accessing the system’s editor program 
with a security lock and key. Editors also 
control all line speeds and characteristics, 
which can be set independently for each 
modem and computer connection. The 
unit converts speed and format between 
the modem and computer. 

A printer can be connected to the unit 
to provide user access times and call 
durations for call charging and for log¬ 
ging unauthorized access attempts. One 
unit simultaneously secures four dial-in 
access ports. Modems up to 9600 bps are 
acceptable. 

Contact GEC Telecommunications 
Ltd. for pricing. 

Reader Service Number 30 

Houston Instrument has announced a 
scanning input device as an option for its 
DMP-50 series pen plotters. The Scan- 
CAD plotter accessory features a 200-dpi 
scan head that detects lines of 0.007 inch 
and automatically scans detailed ar¬ 
chitectural, engineering, or other CAD 
drawings from paper, vellum, acetate 
film, or blueline stock. 

According to the company, when 
using an IBM PC AT with a drawing of 
medium complexity and a scan velocity 
of 2 ips, Scan-CAD can input a D-size 

drawing in 12 minutes and an E-size 
drawing in 24 minutes. Scan-CAD in¬ 
cludes a snap-on scan head, cable and 
cable support assembly, scanner con¬ 
troller expansion card, scanning soft¬ 
ware, and operation manual. The unit 
requires an IBM PC or AT with 10M- 
byte or larger hard disk and 640K 
memory and a Houston Instrument 
DMP-50 series drafting plotter. 

Priced at $2995, the plotter option is 
expected to be available in December. 

Reader Service Number 31 
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VAX-version DSP adapted for IBM PCs 
Signal Technology Inc. has announced 

that Version 6.0 of its Interactive Labo¬ 
ratory System allows IBM PC users to 
access the range of ILS programs 
formerly only available to VAX/VMS 
users. The PC digital signal/speech pro¬ 
cessor includes a menu-based user inter¬ 
face, color graphics, and additional data 
acquisition support. Speech processing 
based on the LPC model provides pitch 
detection, parameter display and editing, 

formant tracking, speech synthesis, and 
pattern classification. 

Version 6.0 supports data acquisition 
for hardware from Data Translation, 
IBM (DACA), Analog Devices, and 
Metrabyte. In addition, it has built-in 
conversion facilities for input-output of 
binary or ASCII data. 

The price for Signal Technology’s 
Version 6.0 is $2495. 

Reader Service Number 33 

C compiler supports Intel 8096 
Intel Corporation’s C-96 compiler 

supports its 8096 family of 16-bit 
microcontrollers. The compiler runs on 
IBM PC XT, AT, or compatible per¬ 
sonal computers containing DOS 3.0. 
The single-pass compiler eliminates in¬ 
termediate assembly files and reduces 
operator involvement and compilation 
time. 

Object modules produced by C-96 can 
be linked with PL/M-96 and ASM-96 
object modules. This allows design teams 
to choose different languages for dif¬ 
ferent software tasks and program in the 

Data entry package supports 
Harris 9300 

Harris Corporation National Accounts 
Division has announced that the RODE/ 
PC data-entry software package from 
DPX, Inc., is available for the Harris 
9300 network communications system. 
The software permits high-volume data 
entry on personal computer workstations 
networked into the Harris 9300. 

RODE/PC is designed for keypunch, 
key-to-disk, and source data entry ap¬ 
plications. Features include data valida¬ 
tion at character, field, and screen levels; 
automatic reformatting; conditional pro¬ 
cessing; on-line help functions; user 
exits; and user-defined formatting. The 
RODE/PC software also supports super¬ 
visory operator functions. Host interface 
is provided by the 9300 RJE, 3270, and 
asynchronous communication gateways. 

Single-user packages of the RODE/PC 
software for the Harris 9300 are priced at 
$595 each. The multiuser version, starting 
at $2125, accommodates up to 16 users. 

Reader Service Number 32 

family 
most efficient and appropriate language 
for each task. 

C-96 generates the “hooks” necessary 
to allow engineers using the VLSiCE-96 
in-circuit emulator and iSBE-96 single¬ 
board emulator to take full advantage of 
the company’s symbolic debugging and 
source code display capability during 
hardware/software integration. 

The C-96 compiler is available for 
$750 in single quantities. Multiple-copy 
discounts are available. 

Reader Service Number 34 

VMEbus adapter supports 
300M-byte throughput 

BBN Advanced Computers has intro¬ 
duced the Butterfly VMEbus Adapter to 
provide up to 300 Mbytes/s of I/O 
bandwidth. The adapter allows the But¬ 
terfly system to expand to large configu¬ 
rations and maintain high throughput 
for array processors, graphics systems, 
and high-speed disk interfaces. 

The interconnection network provides 
all processors with equal access to all 
memory in the system. Data moves to 
and from the VMEbus without going 
through intermediate processor nodes. 
The adapter operates with a 32-bit ad¬ 
dress and data VMEbus and consists of 
two boards driven by a Motorola 68020 
microprocessor. One board contains a 
bus interface and plugs into the back¬ 
plane; the other board, containing the 
microprocessor, interfaces to two ports 
on the Butterfly switch and occupies a 
slot in the card cage. 

The VME Adapter is available from 
BBN Advanced Computers for $15,000. 

Reader Service Number 35 

DSP card comes with 6 

application packages 
The DSP-16 from Ariel Corporation is 

a data acquistion/signal processor plug¬ 
in card for the IBM PC, XT, or AT, 
which includes a data buffer capable of 
storing 21 seconds of audio at maximum 
bandwidth. Bundled with the DSP-16 
hardware are six software application 
packages called the PC Sampler. 

The signal acquisition, synthesis, and 
processing system combines two channels 
of 50-kHz sample rate, 16-bit-resolution 
input/output conversion, the data buf¬ 
fer, and the TMS32020 DSP micropro¬ 
cessor. The 5-MIPS throughput of the 
TMS32020 makes possible complex pro¬ 
cessing and analysis of the acquired 
signal in real time, freeing the host com¬ 
puter to set up and control the DSP-16 
program, display the processed signal, 
and store and retrieve data. A separate 
TMS32020-to-host interface port permits 
program modification and data transfer 
on the fly. 

The PC Sampler software package in¬ 
cludes a program development system 
and five software application programs; 
data acquisition, digital audio effects, 
storage oscilloscope, audio loop editor, 
and waveform synthesizer. The Program 
Development System includes driver 
routine, a TMS32020 assembler, and 
debug facilities. 

List price for quantities one to nine of 
Ariel Corporation’s DSP-16 plug-in card 
is $2495. OEM quantity discounts are 
available. 

Reader Service Number 36 

Package converts raster file 
to vector data 

Microtek Lab is offering its CADmate 
scanner-to-CAD conversion software for 
the IBM PC. CADmate converts scanned 
(raster or bit-mapped) images to vector 
(line-based) data that is compatible with 
AutoCAD, VersaCAD, and other PC- 
based CADD software. 

CADmate accepts A-size engineering, 
architectural, and other drawings from 
the company’s MS-300A scanner at 200 
or 300 dpi. It also accepts A- to E-size 
drawings scanned from the 200-dpi 
Houston Instrument Scan-CAD plotter 
accessory. 

Microtek Lab prices CADmate at 
$995. 

Reader Service Number 37 
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New Products 

AI software repairs PC 

hard disks 
The Disk Technician automated ar¬ 

tificial intelligence system prevents, 
detects, repairs, and recovers hard-disk 
media failures before data can be lost on 
IBM PCs and compatibles. According to 
Prime Solutions Inc., the system takes 60 
seconds of daily hands-on operator time 
to use. 

Disk Technician resides on a 514-inch 
diskette and works on hard and floppy 
disks. The program performs automatic 
daily, weekly, and monthly hard-disk sys¬ 
tem testing and repairing of individual 
bytes on the disk, occupied or not, for 
reading, writing, track alignment, and 
magnetic retentivity. All unsafe soft er¬ 
rors are either repaired or blocked. 

An early warning detection system in 
Disk Technician removes unrepairable 
marginal areas from use. The AI calibra¬ 
tion and alignment diskette automatical¬ 
ly adjusts Disk Technician to the in¬ 
dividual system being checked and 
features a history and analysis function 
that “learns” its host system. Pressing P 
or Enter/Return produces a printed or 
screen report of test results. 

An added feature is SafePark, a 
memory-resident program that moves 
the disk head to a safe zone when there 
has been no activity for seven seconds. 
In the safe zone data is protected against 
loss due to power failure or power spikes 
and fluctuations. 

Contact Prime Solutions Inc. for 
pricing. 

Reader Service Number 38 

The MicroSpeed FastTrap three-dimensional I/O device has a large tracking surface 
considered to be very stable in high-resolution graphics applications. The pointing 
device uses a trackball for x,y motion control and a fingerwheel to control the 
third, or z> axis. FastTrap has a suggested retail price of $149; delivery is 30 to 60 
days ARO. 

Reader Service Number 39 

Motorola accepts orders for DSP56200 FIR chip 

Motorola’s Digital Signal Processor 
Operations has announced the avail¬ 
ability of its off-the-shelf DSP56200 
finite impulse response filter chip for 
sampling. Fabricated in 1.5-micrometer 
CMOS technology, the DSP56200 
features the least mean square adapta¬ 
tion algorithm, which is implemented in 
silicon and eliminates the need for ad¬ 
ditional programming. 

The FIR chip supports applications in 
general digital filtering and data acqui¬ 
sition systems for DSP products; the 

company expects it to be particularly 
useful in communications products re¬ 
quiring adaptive echo cancelling or linear 
phase digital filtering. 

The DSP56200 FIR contains two 
RAM arrays and a multiply/accumu¬ 
lator. The RAM arrays consist of a 
16-bit-by-256 location data RAM and a 
24-bit-by-256 location coefficient RAM. 
A 40-bit product results from the 16-bit- 
by-24-bit multiplier/accumulator. 

An 8-bit data bus and three control 
lines provide an interface to fast and 

slow general-purpose processors. The 
DSP56200 operates in dual-channel FIR 
filter mode, single-channel FIR filter 
mode, or single-channel adaptive filter 
mode. It can be cascaded in both the 
single-channel FIR and adaptive filter 
modes. In standby mode the chip retains 
data and coefficient memory and draws 
less than 1mA of power. 

The 28-pin DIP device is priced at 
$100. Production quantities are expected 
to be available fall 1987. 

Reader Service Number 40 
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AT&T announces 
WE DSP 16 chip 

AT&T’s digital signal processor, the 
WE DSP 16, multiplies and adds instruc¬ 
tions simultaneously at a rate of either 75 
or 55 nanoseconds, or about 13.3 or 18.2 
million instructions per second. 

The WE DSP 16 is implemented in 
1.0-micrometer double CMOS and 
dissipates less than 0.33 watts of power. 
The 16-bit IC has an on-board instruc¬ 
tion cache that executes a set of up to 15 
instructions 127 times with no looping 
overhead. A parallel pipelined architec¬ 
ture permits different operations to be 
executed by one DSP 16 simultaneously. 

Samples of the AT&T WE DSP16 in 
both speeds are currently available; full 
production is expected by fall 1987. 

Contact AT&T for pricing. 
Reader Service Number 41 

TI adds to TMS320 DSP family 
Texas Instruments has developed its 

third generation of TMS320 digital signal 
processors, the TMS320C30. With a 
computational rate designed to be 
greater than 33 million floating-point 
operations per second, the chip can be 
used in real-time DSP and computation¬ 
intensive applications. Its performance 
level is gained through internal paral¬ 
lelism, large on-chip memories, and con¬ 
current DMA. 

Key features of the TMS320C30 in¬ 
clude a 60-ns, single-cycle execution 
time; two lK-by-32-bit, single-cycle, 
dual-access RAM blocks; one 4K-by-32- 
bit single-cycle, dual-access ROM block; 
a 64-by-32-bit instruction cache; 32-bit 
instruction and data words and 24-bit 
addresses; a 32/40-bit floating-point and 
integer multiplier; and a 32/40-bit 
floating-point, integer, and logical ALU. 

Additionally, the DSP offers eight ex¬ 
tended precision registers, two 32-bit 
address-generator ALUs with eight aux¬ 
iliary registers, and an on-chip DMA 
controller for concurrent I/O and CPU 
operation. 

The 1-micrometer CMOS chip is 
upward-compatible with previous ver¬ 
sions of the TMS320 family. Application 
support and quality development tools 
available include a full Kernighan and 
Ritchie C compiler, which supports in¬ 
line assembly language code. 

TI expects sample quantities to be 
available first quarter 1988 in two ver¬ 
sions. A 144-pin microprocessor version 
is unpriced as yet; an 84-pin microcom¬ 
puter will most likely be priced from $40 
to $50 each in OEM quantities. Produc¬ 
tion is projected for fourth quarter 1988. 

Reader Service Number 43 

SRAM performs at 15-ns speeds 

Organized as 256 words by 4 bits, the VLSI Technology VT7C122 SRAM is en¬ 

closed in 22-pin plastic DIP; it is also available in 25-ns and 35-ns versions. 

The VT7C122 lK-bit static RAM from 
the Application Specific Memory Prod¬ 
ucts Division of VLSI Technology offers 
access and cycle times of 15 nanosec¬ 
onds. The CMOS memory chip is de¬ 
signed for applications of cache mem¬ 

ories, writeable control stores, and data 
buffers. 

The VT7C122 SRAM is available in 
sample quantities of 1000 for $10.44 
each. Production-level availability is 
expected by fall 1987. 

Reader Service Number 42 

Image capture, graphics 
boards announced 

Vutek Systems has introduced the 
Freeze Frame Image Capture and Super 
Deluxe EGA boards. Freeze Frame 
digitizes video images in real time from 
standard NTSC sources such as a CCTV 
camera, VCR, or videodisc player and 
combines the image with text for viewing 
on a monitor and subsequent storage on 
a disk. The combined image can be 
printed on a dot matrix or laser printer. 
Freeze Frame works with standard EGA 
or CGA boards in IBM PCs or com¬ 
patibles. 

The Deluxe EGA board allows users 
to draw 16 colors from a palette of 64 
and supports features of the IBM EGA, 
CGA, PGA, DEGA, and MDA 
adapters. It also provides keyboard 
switching when changing from EGA to 
CGA modes. 

Freeze Frame prices start at $1379, 
and Deluxe EGA retails for $559. 

Reader Service Number 44 

Reader Interest Survey 

Indicate your interest in this department 
by circling the appropriate number on the 
Reader Interest Card. 
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Department 

Product Summary 

Marlin H. Mickle 
University of Pittsburgh 

For more information, circle the appropriate 
Reader Service Number on the Reader 
Service Card at the back of the magazine. 

Manufacturer Model Comments Rs No. 

Chips/Components 

Accutek Micro- 

circuit Corp. 

Analogic Corp. 

Integrated Device 
Technology 

Boards 

Levco 

Software 

University of 
Southern California 

Peripherals 

Commodore 
Business 
Machines 

DRAM modules Family of 6:1-density dynamic RAM modules comes in 18-pin DIP, 22-pin 60 
SIP, and 30-pin and 40-pin SIMM configurations, which comply to JEDEC 
pinout standards. Each device uses 1M, 256K, or 64K chips packaged in 
LCCs or PLCCs and surface mounted to a multilayer substrate. Prices not 

stated. 

ADAM-826 Eurocard-packaged analog-to-digital converter is available in two configura- 61 
Eurocard tions, the basic A/D converter with 1.5-ms conversion time and another 

with sample and hold amplifier and speeds of ±0.0015 percent in less than 

800 ns for a full 20V step. Price not stated. 

IDT75C19/29 CMOS 9-bit, 125-MHz video digital-to-analog converter optimized for ar- 62 

DAC converters tificial vision applications drives a 75-ohm standard load to video levels with 
1280 x 1024 resolution. IDT75C19 features ECL-compatible inputs, and 
the IDT75C29 has TTL-compatibie inputs. Packaging includes 24-pin 
hermetic DIPs; 28-pin LCCs; and 24-pin, 0.300-inch plastic Thindips. 

$38.50 for commercial-grade Cerdip in 100-up quantities. 

Prodigy SE Macintosh SE performance-enhancement board plugs into the SE-Bus slot 63 

to change the computer into a portable workstation capable of running ap¬ 
plications 100 times faster. The 16-MHz, 32-bit 68020 board features 
lM-byte RAM; a built-in, nonvolatile RAM disk; and two on-board expan¬ 
sion ports for adding high-speed memory and peripheral connections. 

$1995 each. 

Scriptwriter IBM PC software permits an author to create educational software with tools 64 
such as graphics, text, and font editors and the IQ programming language. 
Users create a set of screens and program the interactions between the user 
and the system. Requires a 512K XT or AT; sound and animation support 
is available. Basic system, $40; laser disk monitor support, $20; program 

library, $20. 

Genlock 1300 Electronic outboard device allows users to superimpose Amiga graphics, 65 
animation, stereo sound, and titles over videotaped images generated by 
video equipment. The 2.5-lb., stand-alone genlocking device synchronizes 
external video signals for display on a monitor or television set or for 
videotape recording. $295 each. 
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Calendar 
Conferences sponsored or cosponsored by 
the Computer Society of the IEEE are indi¬ 
cated by the society’s logo. Submit informa¬ 
tion eight weeks before cover date to Calen¬ 
dar, IEEE Micro, 10662 Los Vaqueros Circle, 
Los Alamitos, CA 90720-2578. 

July 

ACM SIGGraph 87, July 27-31, Ana¬ 
heim, California. Contact SIGGraph 87 

Conference Management, Smith Bucklin and 
Associates, Inc., Ill E. Wacker Dr., Suite 
600, Chicago, IL 60601; (312) 644-6610. 

14th Annual Conference on Computer 
Graphics and Interactive Techniques (ACM), 
July 27-31, Anaheim, California. Contact 
SIGGraph 87 Conference Management, Smith 
Bucklin and Associates, Inc., Suite 600, 
Chicago, IL 60601; (312) 644-6610. 

August 

Eurographics 87 (ACM, IFIP), August 24-28, 
Amsterdam. Contact Secretariat Eurographics 
87, c/o Organisatie Bureau Amsterdam, 
Europaplein 12, 1078 GZ Amsterdam, The 
Netherlands; phone 31 (20) 44-08-07. 

1987 Annual International Test Con¬ 
ference, August 30-September 4, Wash¬ 

ington, DC. Contact Doris Thomas, PO Box 
264, Mount Freedom, NJ 07970; (201) 
895-5260. 

September 

Euromicro 87, 13th Symposium on Micro¬ 
processing and Microprogramming; 
Microcomputers—Usage, Methods, and 
Structures, September 14-17, Portsmouth, 
England. Contact Chiquita Snippe-Marlisa, 
p/a TH Twente, gebouw TW/RC, Rm. 
A227, PO Box 217, 7500 AE Enschede, The 
Netherlands; phone 31 (53) 33-87-99. 

1CCC-ISDN 87, Evolving to Integrated Ser¬ 
vices Digital Networks in North America, 
September 15-17, Dallas. Contact Caroline 
Stites, Bell Atlantic, 1310 N. Court House 
Rd., tenth floor, Arlington, VA 22201; (703) 
974-5453. 

Midcon 87 (IEEE), September 15-17, Rose- 
mont, Illinois. Contact Alexes Razevich, Elec¬ 
tronic Conventions Management, 8110 Air¬ 
port Blvd., Los Angeles, CA 90045; (213) 
772-2965 or (800) 421-6816. 

1987 Design Automation Conference 
(ASME), September 27-30, Boston. Contact 
S.S. Rao, School of Mechanical Engineering, 
Purdue University, West Lafayette, IN 47907; 
(317) 494-5699. 

Fall National Design Engineering Show, Cor¬ 
porate Electronic Publishing Systems, Sep¬ 
tember 29-October 1, New York. Contact 
Show Manager, Fall National Design Engi¬ 
neering Show, 999 Summer St., Stamford, 
CT 06905; (203) 964-0000. 

October 

12th Conference on Local Computer 
Networks, October 5-7, Minneapolis, 

Minnesota. Contact Stephane Johnson, Start, 
Inc., 10301 Toledo Ave. South, Bloomington, 
MN 55437; (612) 831-2122. 

ICCD-87, IEEE International Con¬ 
ference on Computer Design: VLSI in 

Computers and Processors, October 5-8, Rye 
Brook, New York. Contact Prathima 
Agrawal, AT&T Bell Laboratories, 600 
Mountain Ave., Rm. 3D-480, Murray Hill, 
NJ 07974; (201) 582- 6943. 

Compsac 87 (Computer Society, IPSJ), 
October 5-9, Tokyo. Contact Tosiyasu 

L. Kunii, c/o Business Center for Academic 
Societies Japan, Yamazaki Bldg. 4F, 2-40-14, 
Hongo, Bunkyo-ku, Tokyo 113, Japan; 
phone 81 (3) 817-5831, or Albert K. Hawkes, 
Sargent & Lundy, Engineering Consultants, 
55 E. Monroe, Chicago, IL 60603; (312) 
269-3640, or Stephen S. Yau, Northwestern 
University, Dept, of Electrical Engineering 
and Computer Science, Evanston, IL 60201; 
(312) 491-3641. 

7th Annual Symposium on Small Com¬ 
puters in the Arts, October 8-11, Phila¬ 

delphia. Contact Maurice Herlihy, Dept, of 
Computer Science, Carnegie Mellon Univer¬ 
sity, Pittsburgh, PA 15213; (412) 268-2584. 

FJCC-87, Fall Joint Computer Con¬ 
ference (Computer Society, ACM), Oc¬ 

tober 25-29, Dallas. Contact Debra Anthony, 
Texas Instruments, 6500 Chase Oaks Blvd., 
PO Box 86905, MS 8419, Plano, TX 75086; 
(214)575-2151. 

FOC/LAN 87, 11th International Fiber Optic 
Communications and Local Area Networks 
Exposition, October 26-30, Anaheim, CA. 
Contact Information Gatekeepers, Inc., 214 
Harvard Ave., Boston, MA 02134; (617) 
232-3111. 

Government Microcircuits Applications Con¬ 
ference, October 27-29, Orlando, Florida. 
Contact Frank J. Rehm, RADX Griffiss Air 
Force Base; (315) 330-7781. 

November 

ICCAD-87, IEEE International Con¬ 
ference on Computer-Aided Design, 

November 9-12, Santa Clara, California. 
Contact Basant Chawla, AT&T Bell Labo¬ 
ratories, 1247 S. Cedar Crest Blvd., Allen¬ 
town, PA 18103; (215) 770-3484. 

December 

Micro 20, 20th Annual Workshop on Micro¬ 
programming (ACM), December 1-4, Col¬ 
orado Springs, Colorado. Contact Gearold R. 
Johnson, Center for Computer-Assisted Engi¬ 
neering, Colorado State University, Fort Col¬ 
lins, CO 80523; (303) 491-5543. 

ISELDECS-87, International Symposium on 
Electronic Devices, Circuits, and Systems, 
December 16-18, Kharagpur, India. Contact 
N.B. Chakrabarti, Dept, of Electronics and 
Electrical Comm. Eng., Indian Institute of 
Technology, Kharagpur 721302, WB, India, 
or Vishwani Agrawal, (201) 582-4349. 

January 1988 

Annual IEEE Design Automation 
Workshop, January 13-15, Apache 

Junction, Arizona. Contact Walling Cyre, 
Control Data, HQM 173, Box 1249, Min¬ 
neapolis, MN 55440; (612) 853-2692. 

February 1988 

ADEE 88, Automated Design and Engineer¬ 
ing for Electronics, February 7-9, New 
Orleans. Contact ADEE West, Cahners Ex¬ 
position Group, 1350 East Touhy Ave., PO 
Box 5060, Des Plaines, IL 60017-5060; (312) 
299-9311. 

Nepcon West 88, February 23-25, Anaheim, 
Calif. Contact Jerry Carter, Cahners Exposi¬ 
tion Group, 1350 East Touhy Ave., PO Box 
5060, Des Plaines, IL 60017-5060; (312) 
299-9311. 
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1730 Massachusetts Ave. NW 
Washington, DC 20036-1903 

General Information: (202) 371-0101 
Publications Orders: (800) 272-6657 
Telex: 7108250437 IEEE COMPSO 

Publications Office 
10662 Los Vaqueros Circle 

Los Alamitos, CA 90720 
Membership and General Information: (714) 821-8380 

European Office 
2 Avenue de la Tanche 

B1160 Brussels, Belgium 
Phone: 32 (2) 660-11-43 
Telex: 25387 AVVAL B 

Term Ending 1988 
Mario R. Barbacci 
Victor R. Basili 
Lorraine M. Duvall 
Michael Evangelist 
Allen L. Hankinson 
Laurel Kaleda 
Ted Lewis 
Ming T. Liu 
Earl E. Swartzlander, Jr. 
Joseph E. Urban 

Purpose 
The Computer Society strives to advance the theory and practice 

of computer science and engineering. It promotes the exchange of 
technical information among its 90,000 members around the world, 
and provides a wide range of services which are available to both 
members and non-members. 

Membership 
Members receive the highly acclaimed monthly magazine Com¬ 

puter, discounts on all society publications, discounts to attend 
conferences, and opportunities to serve in various capacities. Mem¬ 
bership is open to members, associate members, and student mem¬ 
bers of the IEEE, and to non-IEEE members who qualify as affiliate 
members of the Computer Society. 

Publications 
Periodicals. The society publishes six magazines (Computer, IEEE 

Computer Graphics and Applications, IEEE Design & Test of Com¬ 
puters, IEEE Expert, IEEE Micro, IEEE Software) and three research 
publications (IEEE Transactions on Computers, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, IEEE Transactions on 
Software Engineering). 

Conference Proceedings, Tutorial Texts, Standards Documents. 
The society publishes more than 100 new titles every year. 

Computer. Received by all society members, Computer is an 
authoritative, easy-to-read monthly magazine containing tutorial, 
survey, and in-depth technical articles across the breath of the com¬ 
puter field. Departments contain general and Computer Society 
news, conference coverage and calendar, interviews, new product 
and book reviews, etc. 

All publications are available to members, nonmembers, libraries, 
and organizations. 

Activities 
Chapters. Over 100 regular and over 100 student chapters around 

the world provide the opportunity to interact with local colleagues, 
hear experts discuss technical issues, and serve the local profes¬ 
sional community. 

Technical Committees. Over 30 TCs provide the opportunity to 
interact with peers in technical specialty areas, receive newsletters, 
conduct conferences, tutorials, etc. 

Standards Working Groups. Draft standards are written by over 60 
SWGs in all areas of computer technology; after approval via vote, 
they become IEEE standards used throughout the industrial world. 

Conferences/Educational Activities. The society holds about 100 
conferences each year around the world and sponsors many educa¬ 
tional activities, including computing sciences accreditation. 

European Office 
This office processes Computer Society membership applications 

and handles publication orders. Payments are accepted by cheques 
in Belgian francs, pounds sterling, German marks, Swiss francs, or 
US dollars, or by American Express, Eurocard, MasterCard, or Visa 
credit cards. 

Ombudsman 
Members experiencing problems — late magazines, membership 

status problems, no answer to complaints — may write to the 
ombudsman at the Publications Office. 

Information 
Use the Reader Service Card to obtain the following material: 

• Membership information and application (RS #202) 
• Publications catalog (proceedings, tutorials, standards) (RS #201) 
• Periodicals subscription application/information for individuals 

(members, sister-society members, others) (RS #200) 
• Periodicals subscription application/information for organizations 

(libraries, companies, etc.) (RS #199) 
• List of awards and award nomination forms (RS #198) 
• Technical committee list and membership application (RS #197) 
• Directory of officers, board members, committee chairs, represen¬ 

tatives, staff, chapters, standards working groups, etc. (RS #196) 
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